Modular representations of the Yangian Y 2 $Y_2$

IF 1 2区 数学 Q1 MATHEMATICS
Hao Chang, Jinxin Hu, Lewis Topley
{"title":"Modular representations of the Yangian \n \n \n Y\n 2\n \n $Y_2$","authors":"Hao Chang,&nbsp;Jinxin Hu,&nbsp;Lewis Topley","doi":"10.1112/jlms.70056","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mi>Y</mi>\n <mn>2</mn>\n </msub>\n <annotation>$Y_2$</annotation>\n </semantics></math> be the Yangian associated to the general linear Lie algebra <span></span><math>\n <semantics>\n <msub>\n <mi>gl</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathfrak {gl}_2$</annotation>\n </semantics></math>, defined over an algebraically closed field <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathbb {k}$</annotation>\n </semantics></math> of characteristic <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$p&gt;0$</annotation>\n </semantics></math>. In this paper, we study the representation theory of the restricted Yangian <span></span><math>\n <semantics>\n <msubsup>\n <mi>Y</mi>\n <mn>2</mn>\n <mrow>\n <mo>[</mo>\n <mi>p</mi>\n <mo>]</mo>\n </mrow>\n </msubsup>\n <annotation>$Y^{[p]}_2$</annotation>\n </semantics></math>. This leads to a description of the representations of <span></span><math>\n <semantics>\n <msub>\n <mi>gl</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathfrak {gl}_{2n}$</annotation>\n </semantics></math>, whose <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-character is nilpotent with Jordan type given by a two-row partition <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(n, n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70056","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Y 2 $Y_2$ be the Yangian associated to the general linear Lie algebra gl 2 $\mathfrak {gl}_2$ , defined over an algebraically closed field k $\mathbb {k}$ of characteristic p > 0 $p>0$ . In this paper, we study the representation theory of the restricted Yangian Y 2 [ p ] $Y^{[p]}_2$ . This leads to a description of the representations of gl 2 n $\mathfrak {gl}_{2n}$ , whose p $p$ -character is nilpotent with Jordan type given by a two-row partition ( n , n ) $(n, n)$ .

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信