CAT(0) and cubulated Shephard groups

IF 1 2区 数学 Q1 MATHEMATICS
Katherine M. Goldman
{"title":"CAT(0) and cubulated Shephard groups","authors":"Katherine M. Goldman","doi":"10.1112/jlms.70050","DOIUrl":null,"url":null,"abstract":"<p>Shephard groups are common generalizations of Coxeter groups, Artin groups, and graph products of cyclic groups. Their definition is similar to that of a Coxeter group, but generators may have arbitrary order rather than strictly order 2. We extend a well-known result that Coxeter groups are <span></span><math>\n <semantics>\n <mrow>\n <mi>CAT</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{CAT}(0)$</annotation>\n </semantics></math> to a class of Shephard groups that have ‘enough’ finite parabolic subgroups. We also show that in this setting, if the associated Coxeter group is type (FC), then the Shephard group acts properly and cocompactly on a <span></span><math>\n <semantics>\n <mrow>\n <mi>CAT</mi>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{CAT}(0)$</annotation>\n </semantics></math> cube complex. As part of our proof of the former result, we introduce a new criteria for a complex made of <span></span><math>\n <semantics>\n <msub>\n <mi>A</mi>\n <mn>3</mn>\n </msub>\n <annotation>$A_3$</annotation>\n </semantics></math> simplices to be <span></span><math>\n <semantics>\n <mrow>\n <mi>CAT</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{CAT}(1)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70050","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Shephard groups are common generalizations of Coxeter groups, Artin groups, and graph products of cyclic groups. Their definition is similar to that of a Coxeter group, but generators may have arbitrary order rather than strictly order 2. We extend a well-known result that Coxeter groups are CAT ( 0 ) $\mathrm{CAT}(0)$ to a class of Shephard groups that have ‘enough’ finite parabolic subgroups. We also show that in this setting, if the associated Coxeter group is type (FC), then the Shephard group acts properly and cocompactly on a CAT ( 0 ) $\mathrm{CAT}(0)$ cube complex. As part of our proof of the former result, we introduce a new criteria for a complex made of A 3 $A_3$ simplices to be CAT ( 1 ) $\mathrm{CAT}(1)$ .

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信