Mobile Observation Field Experiment of Atmospheric Vertical Structure and Its Application in Precipitation Forecasts Over the Tibetan Plateau

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Xinghong Cheng, Xiangde Xu, Gang Bai, Ruiwen Wang, Jianzhong Ma, Debin Su, Bing Chen, Siying Ma, Chunmei Hu, Shengjun Zhang, Runze Zhao, Hongda Yang, Siyang Cheng, Wenqian Zhang, Shizhu Wang, Gang Xie
{"title":"Mobile Observation Field Experiment of Atmospheric Vertical Structure and Its Application in Precipitation Forecasts Over the Tibetan Plateau","authors":"Xinghong Cheng,&nbsp;Xiangde Xu,&nbsp;Gang Bai,&nbsp;Ruiwen Wang,&nbsp;Jianzhong Ma,&nbsp;Debin Su,&nbsp;Bing Chen,&nbsp;Siying Ma,&nbsp;Chunmei Hu,&nbsp;Shengjun Zhang,&nbsp;Runze Zhao,&nbsp;Hongda Yang,&nbsp;Siyang Cheng,&nbsp;Wenqian Zhang,&nbsp;Shizhu Wang,&nbsp;Gang Xie","doi":"10.1029/2024JD042467","DOIUrl":null,"url":null,"abstract":"<p>We carried out the first Mobile Field Observation Campaign of Atmospheric Profiles (MFOCAP) in the southeast Tibet and the Three-River Source Region (TRSR) of the Tibetan Plateau (TP) by adopting two vehicle-mounted integrated mobile observations (MO) system from July 18 to 30, 2021. Reliable MO data sets of air temperature (Ta), water vapor density (WVD) and relative humidity (RH) with high spatio-temporal resolution over the TP were obtained and assimilated to improve precipitation forecast using the four-dimensional variational (4DVAR) data assimilation (DA) method. The results show that Ta, WVD and RH profile data retrieved with the mobile microwave radiometer (MR) are credible over the TP. The atmospheric vertical structure measured by the mobile MR can reproduce the spatio-temporal evolution characteristics of water vapor transport, temperature stratification and cloud structure. The distribution pattern of 24-hr accumulated rainfall prediction with Ta profile DA was closer to measurements, and 6–12 hr forecasts for low to moderate rainfall in the central and western regions of Qinghai province were improved significantly. Data assimilation with air temperature retrievals from mobile MR observations were found beneficial for accurate simulation of water vapor transport, convergence and divergence of wind field, and upward motion associated with precipitation events. The finding of this study highlights the value of MR remote sensing observations in improving the rainfall monitoring and forecasts over the TP and downstream regions.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 24","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042467","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We carried out the first Mobile Field Observation Campaign of Atmospheric Profiles (MFOCAP) in the southeast Tibet and the Three-River Source Region (TRSR) of the Tibetan Plateau (TP) by adopting two vehicle-mounted integrated mobile observations (MO) system from July 18 to 30, 2021. Reliable MO data sets of air temperature (Ta), water vapor density (WVD) and relative humidity (RH) with high spatio-temporal resolution over the TP were obtained and assimilated to improve precipitation forecast using the four-dimensional variational (4DVAR) data assimilation (DA) method. The results show that Ta, WVD and RH profile data retrieved with the mobile microwave radiometer (MR) are credible over the TP. The atmospheric vertical structure measured by the mobile MR can reproduce the spatio-temporal evolution characteristics of water vapor transport, temperature stratification and cloud structure. The distribution pattern of 24-hr accumulated rainfall prediction with Ta profile DA was closer to measurements, and 6–12 hr forecasts for low to moderate rainfall in the central and western regions of Qinghai province were improved significantly. Data assimilation with air temperature retrievals from mobile MR observations were found beneficial for accurate simulation of water vapor transport, convergence and divergence of wind field, and upward motion associated with precipitation events. The finding of this study highlights the value of MR remote sensing observations in improving the rainfall monitoring and forecasts over the TP and downstream regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信