M.-C. Fok, R. A. Wolf, C. P. Ferradas, S.-B. Kang, A. Glocer, N. Y. Buzulukova, Q. Ma, D. T. Welling
{"title":"Implementation of an Asymmetric Internal Field in the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) Model","authors":"M.-C. Fok, R. A. Wolf, C. P. Ferradas, S.-B. Kang, A. Glocer, N. Y. Buzulukova, Q. Ma, D. T. Welling","doi":"10.1029/2024JA033075","DOIUrl":null,"url":null,"abstract":"<p>A Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model has been developed to study the dynamics of the cold plasmasphere and the energetic plasmas in the inner magnetosphere, as well as their couplings with each other and with the ionosphere. The CIMI model is able to predict the cold plasma density and energetic electron and ion fluxes in geospace. Furthermore, CIMI is capable of predicting the Region 2 currents, penetration electric field, electron and ion precipitation and magnetospheric heat flux into the ionosphere. The CIMI model includes a realistic magnetic field configuration with a combination of an internal field and an external field imposed by the interaction of the solar wind with the magnetosphere. The internal field has previously been assumed to be a dipole. Recently, the International Geomagnetic Reference Field (IGRF) has been implemented. This new capability enables studies of north-south and longitudinal dependences in particle precipitation and heat flux, as well as the corresponding asymmetries in ionospheric and thermospheric responses. In this paper, we will briefly review the CIMI equations and model output. Then we will describe the new implementation of the IGRF model into CIMI and how to estimate the north-south asymmetry in precipitating fluxes from the differences in field strength between magnetic conjugate points. The inclusion of a realistic internal field leads CIMI into a better position to couple with sophisticated ionosphere-thermosphere models, most of which are using the IGRF model.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033075","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033075","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
A Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model has been developed to study the dynamics of the cold plasmasphere and the energetic plasmas in the inner magnetosphere, as well as their couplings with each other and with the ionosphere. The CIMI model is able to predict the cold plasma density and energetic electron and ion fluxes in geospace. Furthermore, CIMI is capable of predicting the Region 2 currents, penetration electric field, electron and ion precipitation and magnetospheric heat flux into the ionosphere. The CIMI model includes a realistic magnetic field configuration with a combination of an internal field and an external field imposed by the interaction of the solar wind with the magnetosphere. The internal field has previously been assumed to be a dipole. Recently, the International Geomagnetic Reference Field (IGRF) has been implemented. This new capability enables studies of north-south and longitudinal dependences in particle precipitation and heat flux, as well as the corresponding asymmetries in ionospheric and thermospheric responses. In this paper, we will briefly review the CIMI equations and model output. Then we will describe the new implementation of the IGRF model into CIMI and how to estimate the north-south asymmetry in precipitating fluxes from the differences in field strength between magnetic conjugate points. The inclusion of a realistic internal field leads CIMI into a better position to couple with sophisticated ionosphere-thermosphere models, most of which are using the IGRF model.