Spectral Induced Polarization Response of Bacteria Growth and Decay in Soil Column Experiments

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yalin Song, Xiaoqing Shi, André Revil, Ahmad Ghorbani, Siyuan Qiang, Kun Xing, Xueyuan Kang, Qilin Wang, Jichun Wu
{"title":"Spectral Induced Polarization Response of Bacteria Growth and Decay in Soil Column Experiments","authors":"Yalin Song,&nbsp;Xiaoqing Shi,&nbsp;André Revil,&nbsp;Ahmad Ghorbani,&nbsp;Siyuan Qiang,&nbsp;Kun Xing,&nbsp;Xueyuan Kang,&nbsp;Qilin Wang,&nbsp;Jichun Wu","doi":"10.1029/2024JG008050","DOIUrl":null,"url":null,"abstract":"<p>Spectral induced polarization (SIP) exhibits potential to be a nonintrusive approach to monitor bacterial activity in biological hotspots associated with the critical zone of the earth. The polarization of bacteria in a low-frequency electrical field is related to the polarization of their electrical double layer coating their surface. However, few studies have quantified the induced polarization responses on both gram-negative (GN) and gram-positive (GP) bacteria in soil column experiments. To address this gap, 17 experiments using two strains, <i>Pseudomonas aeruginosa</i> O1 (PAO1, GN) and <i>Brevibacillus centrosporus</i> (L3, GP) are conducted. Complex conductivity spectra are collected in the frequency range 10 mHz–10 kHz during bacterial growth and decay phases in soils. The complex conductivity spectra are fitted using a double Cole-Cole model to remove the effect of Maxwell-Wagner polarization. The change in the magnitude of the polarization (quadrature conductivity or normalized chargeability of the low-frequency contribution) is linearly related to the bacterial density, regardless of the type of bacteria. The changes in the normalized chargeability and Cole-Cole relaxation time are directly proportional to the density of bacteria. Furthermore, it is inferred that the thickness of microcolonies plays a critical role in the relaxation time rather than the diameter of individual bacteria. This study expands the potential of SIP for in situ monitoring of microbial activity in soils.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008050","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral induced polarization (SIP) exhibits potential to be a nonintrusive approach to monitor bacterial activity in biological hotspots associated with the critical zone of the earth. The polarization of bacteria in a low-frequency electrical field is related to the polarization of their electrical double layer coating their surface. However, few studies have quantified the induced polarization responses on both gram-negative (GN) and gram-positive (GP) bacteria in soil column experiments. To address this gap, 17 experiments using two strains, Pseudomonas aeruginosa O1 (PAO1, GN) and Brevibacillus centrosporus (L3, GP) are conducted. Complex conductivity spectra are collected in the frequency range 10 mHz–10 kHz during bacterial growth and decay phases in soils. The complex conductivity spectra are fitted using a double Cole-Cole model to remove the effect of Maxwell-Wagner polarization. The change in the magnitude of the polarization (quadrature conductivity or normalized chargeability of the low-frequency contribution) is linearly related to the bacterial density, regardless of the type of bacteria. The changes in the normalized chargeability and Cole-Cole relaxation time are directly proportional to the density of bacteria. Furthermore, it is inferred that the thickness of microcolonies plays a critical role in the relaxation time rather than the diameter of individual bacteria. This study expands the potential of SIP for in situ monitoring of microbial activity in soils.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信