Validation of Mg Isotopic Measurements for the Characterisation of Ten Carbonate Reference Materials with Ultra-Low Mg Mass Fractions

IF 2.7 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yajun An, Xin Li, Wenning Lu, Jianbing Xu, Yongli Xue, Qing Gong, Yang Peng, Fang Liu, Mingxing Ling, Zhaofeng Zhang
{"title":"Validation of Mg Isotopic Measurements for the Characterisation of Ten Carbonate Reference Materials with Ultra-Low Mg Mass Fractions","authors":"Yajun An,&nbsp;Xin Li,&nbsp;Wenning Lu,&nbsp;Jianbing Xu,&nbsp;Yongli Xue,&nbsp;Qing Gong,&nbsp;Yang Peng,&nbsp;Fang Liu,&nbsp;Mingxing Ling,&nbsp;Zhaofeng Zhang","doi":"10.1111/ggr.12582","DOIUrl":null,"url":null,"abstract":"<p>Magnesium isotope ratios in carbonate rocks and minerals play an important role in tracing geological and biological processes. We report δ<sup>26</sup>Mg<sub>DSM3</sub> values for the first time in ten carbonate reference materials (GBW07865, GBW07114, GBW(E)070159, GBW07136, GBW07108, GBW03109a, GBW07120, GBW07214a, IAEA-B-7 and IAEA-CO-8) with calcium to magnesium mass ratios around 1300 g g<sup>−1</sup> and ultra-low Mg mass fractions of 295 μg g<sup>−1</sup>. A combination of AG MP-50 (100–200 mesh) and AG 50W-X12 (200–400 mesh) resins for the matrix extraction and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were used for the isotopic measurements. This measurement procedure is applicable to materials with high and low Mg mass fractions (e.g., carbonates, lunar highlands anorthosites, ice core). It was validated using various types of reference material. In-house synthetic solutions with 1000 and 1300 g g<sup>−1</sup> [Ca]/[Mg] mass ratios yielded δ<sup>26</sup>Mg<sub>DSM3</sub> values at 2<i>s</i> = ±0.05‰ (<i>n</i> = 62), -4.89‰ and -4.89‰, respectively, indistinguishable from those of the pure Mg solutions, at -4.91‰. δ<sup>26</sup>Mg<sub>DSM3</sub> values in well characterised carbonatite and carbonate reference materials (such as JDo-1, COQ-1, GBW07133, GBW07217a and GBW07129), with varying MgO and CaO mass fractions, were in agreement with literature values.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 4","pages":"941-959"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12582","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium isotope ratios in carbonate rocks and minerals play an important role in tracing geological and biological processes. We report δ26MgDSM3 values for the first time in ten carbonate reference materials (GBW07865, GBW07114, GBW(E)070159, GBW07136, GBW07108, GBW03109a, GBW07120, GBW07214a, IAEA-B-7 and IAEA-CO-8) with calcium to magnesium mass ratios around 1300 g g−1 and ultra-low Mg mass fractions of 295 μg g−1. A combination of AG MP-50 (100–200 mesh) and AG 50W-X12 (200–400 mesh) resins for the matrix extraction and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) were used for the isotopic measurements. This measurement procedure is applicable to materials with high and low Mg mass fractions (e.g., carbonates, lunar highlands anorthosites, ice core). It was validated using various types of reference material. In-house synthetic solutions with 1000 and 1300 g g−1 [Ca]/[Mg] mass ratios yielded δ26MgDSM3 values at 2s = ±0.05‰ (n = 62), -4.89‰ and -4.89‰, respectively, indistinguishable from those of the pure Mg solutions, at -4.91‰. δ26MgDSM3 values in well characterised carbonatite and carbonate reference materials (such as JDo-1, COQ-1, GBW07133, GBW07217a and GBW07129), with varying MgO and CaO mass fractions, were in agreement with literature values.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geostandards and Geoanalytical Research
Geostandards and Geoanalytical Research 地学-地球科学综合
CiteScore
7.10
自引率
18.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信