{"title":"Variable-Coefficient Evolution Problems via the Fokas Method Part I: Dissipative Case","authors":"Bernard Deconinck, Matthew Farkas","doi":"10.1111/sapm.12800","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12800","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.