Variable-Coefficient Evolution Problems via the Fokas Method Part I: Dissipative Case

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Bernard Deconinck, Matthew Farkas
{"title":"Variable-Coefficient Evolution Problems via the Fokas Method Part I: Dissipative Case","authors":"Bernard Deconinck,&nbsp;Matthew Farkas","doi":"10.1111/sapm.12800","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12800","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We derive explicit solution representations for linear, dissipative, second-order initial-boundary value problems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient interface problem, previously solved using the unified transform method of Fokas. Our method produces an explicit representation of the solution, allowing us to determine properties of the solution directly. As explicit examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to find the eigenvalues of dissipative second-order linear operators (including non–self-adjoint ones) as roots of a transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信