The Averaged Hydrostatic Boussinesq Ocean Equations in Generalized Vertical Coordinates

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Malte F. Jansen, Alistair Adcroft, Stephen M. Griffies, Ian Grooms
{"title":"The Averaged Hydrostatic Boussinesq Ocean Equations in Generalized Vertical Coordinates","authors":"Malte F. Jansen,&nbsp;Alistair Adcroft,&nbsp;Stephen M. Griffies,&nbsp;Ian Grooms","doi":"10.1029/2024MS004506","DOIUrl":null,"url":null,"abstract":"<p>Due to their limited resolution, numerical ocean models need to be interpreted as representing filtered or averaged equations. How to interpret models in terms of formally averaged equations, however, is not always clear, particularly in the case of hybrid or generalized vertical coordinate models, which limits our ability to interpret the model results and to develop parameterizations for the unresolved eddy contributions. We here derive the averaged hydrostatic Boussinesq equations in generalized vertical coordinates for an arbitrary thickness-weighted average. We then consider various special cases and discuss the extent to which the averaged equations are consistent with existing ocean model formulations. As previously discussed, the momentum equations in existing depth-coordinate models are best interpreted as representing Eulerian averages (i.e., averages taken at fixed depth), while the tracer equations can be interpreted as either Eulerian or thickness-weighted isopycnal averages. Instead we find that no averaging is fully consistent with existing formulations of the parameterizations in semi-Lagrangian discretizations of generalized vertical coordinate ocean models such as MOM6. A coordinate-following average would require “coordinate-aware” parameterizations that can account for the changing nature of the eddy terms as the coordinate changes. Alternatively, the model variables can be interpreted as representing either Eulerian or (thickness-weighted) isopycnal averages, independent of the model coordinate that is being used for the numerical discretization. Existing parameterizations in generalized vertical coordinate models, however, are not always consistent with either of these interpretations, which, respectively, would require a three-dimensional divergence-free eddy tracer advection or a form-stress parameterization in the momentum equations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004506","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004506","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their limited resolution, numerical ocean models need to be interpreted as representing filtered or averaged equations. How to interpret models in terms of formally averaged equations, however, is not always clear, particularly in the case of hybrid or generalized vertical coordinate models, which limits our ability to interpret the model results and to develop parameterizations for the unresolved eddy contributions. We here derive the averaged hydrostatic Boussinesq equations in generalized vertical coordinates for an arbitrary thickness-weighted average. We then consider various special cases and discuss the extent to which the averaged equations are consistent with existing ocean model formulations. As previously discussed, the momentum equations in existing depth-coordinate models are best interpreted as representing Eulerian averages (i.e., averages taken at fixed depth), while the tracer equations can be interpreted as either Eulerian or thickness-weighted isopycnal averages. Instead we find that no averaging is fully consistent with existing formulations of the parameterizations in semi-Lagrangian discretizations of generalized vertical coordinate ocean models such as MOM6. A coordinate-following average would require “coordinate-aware” parameterizations that can account for the changing nature of the eddy terms as the coordinate changes. Alternatively, the model variables can be interpreted as representing either Eulerian or (thickness-weighted) isopycnal averages, independent of the model coordinate that is being used for the numerical discretization. Existing parameterizations in generalized vertical coordinate models, however, are not always consistent with either of these interpretations, which, respectively, would require a three-dimensional divergence-free eddy tracer advection or a form-stress parameterization in the momentum equations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信