Data-driven framework for predicting the sorption capacity of carbon dioxide and methane in tight reservoirs

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS
Fahd Mohamad Alqahtani, Mohamed Riad Youcefi, Hakim Djema, Menad Nait Amar, Mohammad Ghasemi
{"title":"Data-driven framework for predicting the sorption capacity of carbon dioxide and methane in tight reservoirs","authors":"Fahd Mohamad Alqahtani,&nbsp;Mohamed Riad Youcefi,&nbsp;Hakim Djema,&nbsp;Menad Nait Amar,&nbsp;Mohammad Ghasemi","doi":"10.1002/ghg.2318","DOIUrl":null,"url":null,"abstract":"<p>As energy demand continues to rise and conventional fuel sources dwindle, there is growing emphasis on previously overlooked reservoirs, such as tight reservoirs. Shale and coal formations have emerged as highly attractive options due to their substantial contributions to global gas reserves. Enhanced shale gas recovery (ESGR) and enhanced coalbed methane recovery (ECBM) based on gas injection are advanced techniques used to increase the extraction of gas from shale and coal formations. One of the key challenges associated with these formations and their enhanced recovery methods is accurately predicting the sorption process and its profile. This is crucial because it affects how methane (CH<sub>4</sub>) and carbon dioxide (CO<sub>2</sub>) are stored and released from the rock, and it significantly impacts the evaluation of gas content and the potential productivity of these formations. Due to the high cost of experimental procedures and the moderate accuracy of existing predictive approaches, this study proposes various cheap and consistent data-driven schemes for predicting the sorption of CH<sub>4</sub> and CO<sub>2</sub> in shale and coal formations. In this regard, three intelligent models, including generalized regression neural network (GRNN), radial basis function neural network (RBFNN), and categorical boosting (CatBoost), were taught and tested using more than 3800 real measurements of CH<sub>4</sub> and CO<sub>2</sub> sorption in shale and coal formations. To find automatically their appropriate control parameters and improve their prediction ability, RBFNN and CatBoost were evolved using grey wolf optimization (GWO). The obtained results exhibited the encouraging prediction capabilities of the suggested models. In addition, it was found that CatBoost-GWO is the most accurate scheme with total root mean square (RMSE) and determination coefficient (<i>R</i><sup>2</sup>) of 0.1229 and 0.9993 for CO<sub>2</sub> sorption, and 0.0681 and 0.9970 for CH<sub>4</sub> sorption, respectively. Additionally, this approach demonstrated its physical validity by respecting the real sorption tendencies with respect to operational parameters. Furthermore, the CatBoost-GWO model outperforms recently published machine learning approaches. Lastly, the findings of this study offer a significant contribution by demonstrating that the suggested model can greatly improve the ease of estimating CO<sub>2</sub> and CH<sub>4</sub> sorption in tight formations, thereby facilitating the simulation of other parameters related to this process. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"1092-1112"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2318","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As energy demand continues to rise and conventional fuel sources dwindle, there is growing emphasis on previously overlooked reservoirs, such as tight reservoirs. Shale and coal formations have emerged as highly attractive options due to their substantial contributions to global gas reserves. Enhanced shale gas recovery (ESGR) and enhanced coalbed methane recovery (ECBM) based on gas injection are advanced techniques used to increase the extraction of gas from shale and coal formations. One of the key challenges associated with these formations and their enhanced recovery methods is accurately predicting the sorption process and its profile. This is crucial because it affects how methane (CH4) and carbon dioxide (CO2) are stored and released from the rock, and it significantly impacts the evaluation of gas content and the potential productivity of these formations. Due to the high cost of experimental procedures and the moderate accuracy of existing predictive approaches, this study proposes various cheap and consistent data-driven schemes for predicting the sorption of CH4 and CO2 in shale and coal formations. In this regard, three intelligent models, including generalized regression neural network (GRNN), radial basis function neural network (RBFNN), and categorical boosting (CatBoost), were taught and tested using more than 3800 real measurements of CH4 and CO2 sorption in shale and coal formations. To find automatically their appropriate control parameters and improve their prediction ability, RBFNN and CatBoost were evolved using grey wolf optimization (GWO). The obtained results exhibited the encouraging prediction capabilities of the suggested models. In addition, it was found that CatBoost-GWO is the most accurate scheme with total root mean square (RMSE) and determination coefficient (R2) of 0.1229 and 0.9993 for CO2 sorption, and 0.0681 and 0.9970 for CH4 sorption, respectively. Additionally, this approach demonstrated its physical validity by respecting the real sorption tendencies with respect to operational parameters. Furthermore, the CatBoost-GWO model outperforms recently published machine learning approaches. Lastly, the findings of this study offer a significant contribution by demonstrating that the suggested model can greatly improve the ease of estimating CO2 and CH4 sorption in tight formations, thereby facilitating the simulation of other parameters related to this process. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信