{"title":"Hybrid Optimization Approach for Handoff Strategy–Based Spectrum Allocation in Cognitive Radio Network","authors":"Renuka Poonia, Priyanka Dalal, Vijay Pal Singh","doi":"10.1002/dac.6078","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Device-to-device (D2D) transmission is essential for enhancing the functionality of fifth-generation (5G) networks. This paper addresses the need for effective power allocation and resource management for D2D users, who operate as secondary users (SUs) alongside primary users (PUs). Ensuring that D2D operations do not disrupt PU interactions is crucial. Traditional bandwidth distribution approaches rely on complete channel state information (CSI) from the base station (BS), leading to uncertainty fin resource allocation. To get rid of these challenges, this paper proposes a novel handoff strategy based on spectrum allocation in cognitive radio networks (CRNs). The data priority–based channel allocation is carried out using proposed hybrid optimization cuttlefish updated dwarf mongoose optimization (CUDMO). It is the combination of both cuttle fish algorithm (CFA) and dwarf mongoose optimization (DMO) algorithms. This optimization considers constraints such as coverage, signal strength, distance, bandwidth and improved strategy like signal-to-noise ratio–channel usability (SNR-CU). Furthermore, an improved fuzzy logic–based proactive handoff mechanism, the fuzzy-induced modified rules for channel selection (FIMRCS), is introduced. This scheme optimally selects channels, minimizing service interruption during handoff. In the dynamic multichannel selection (DMCS) scheme, parameters like channel rank, channel transmission, and channel usability are considered as the constraints while selecting the channel. They are evaluated against a set of 27 defined rules, ensuring efficient data transmission through the chosen channels. Finally, the performance of proposed CUDMO algorithm is contrasted over state-of-the-art models in terms of various constraints. The CUDMO for Device 450 generated a bandwidth of 1.175 bps, surpassing the lower bandwidth achieved by conventional strategies.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.6078","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Device-to-device (D2D) transmission is essential for enhancing the functionality of fifth-generation (5G) networks. This paper addresses the need for effective power allocation and resource management for D2D users, who operate as secondary users (SUs) alongside primary users (PUs). Ensuring that D2D operations do not disrupt PU interactions is crucial. Traditional bandwidth distribution approaches rely on complete channel state information (CSI) from the base station (BS), leading to uncertainty fin resource allocation. To get rid of these challenges, this paper proposes a novel handoff strategy based on spectrum allocation in cognitive radio networks (CRNs). The data priority–based channel allocation is carried out using proposed hybrid optimization cuttlefish updated dwarf mongoose optimization (CUDMO). It is the combination of both cuttle fish algorithm (CFA) and dwarf mongoose optimization (DMO) algorithms. This optimization considers constraints such as coverage, signal strength, distance, bandwidth and improved strategy like signal-to-noise ratio–channel usability (SNR-CU). Furthermore, an improved fuzzy logic–based proactive handoff mechanism, the fuzzy-induced modified rules for channel selection (FIMRCS), is introduced. This scheme optimally selects channels, minimizing service interruption during handoff. In the dynamic multichannel selection (DMCS) scheme, parameters like channel rank, channel transmission, and channel usability are considered as the constraints while selecting the channel. They are evaluated against a set of 27 defined rules, ensuring efficient data transmission through the chosen channels. Finally, the performance of proposed CUDMO algorithm is contrasted over state-of-the-art models in terms of various constraints. The CUDMO for Device 450 generated a bandwidth of 1.175 bps, surpassing the lower bandwidth achieved by conventional strategies.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.