A Reliable and Load Balancing Controller Placement Method in Software-Defined Networks

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mahsa Saeedi Goraghani, Mahboubeh Afzali, Fazel Sharifi
{"title":"A Reliable and Load Balancing Controller Placement Method in Software-Defined Networks","authors":"Mahsa Saeedi Goraghani,&nbsp;Mahboubeh Afzali,&nbsp;Fazel Sharifi","doi":"10.1002/dac.6059","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Software-defined networking (SDN) achieves the programmability of the control plane by separating it from the data forwarding plane to provide flexible management of the network resources. The multicontroller architecture is required to be deployed to enhance the scalability and reliability of the control plane with the network traffic growth. However, the controller placement problem (CPP) is considered an important challenge in software-defined networking, which should be addressed. The number of required controllers and their locations are the important challenges that affect various aspects of the separated controller plane such as the performance metrics, and ability to respond to failures. Also, unappropriated subdomain partitioning of the software-defined network by multicontrollers may cause the unbalanced distribution of controller loads resulting in the reduction of communication performance of the network. In this paper, an optimization subdomain partitioning method based on the particle swarm optimization (PSO) algorithm is presented for deploying the CPP and allocating switches to controllers. The proposed control placement method aims to minimize the cost of the network known as the number of required controllers, to minimize the maximum load imbalance between controllers, and to improve resilience against a failure between each switch and its mapping controller. The presented method is evaluated using two widely used networks from the Internet Topology Zoo such as Aarnet, Oxford, Chinanet, Interoute, and ION topologies to show the scalability of the proposed method. The results show that the proposed method achieves better performance in the required number of controllers, propagation delay, and load balancing among controllers when compared to the controller placement methods based on the Varna, clustering-based network partition algorithm (CNPA), and <i>K</i>-means. Moreover, the proposed method improves load balancing when compared to the controller placement methods based on the Varna, CNPA, and <i>K</i>-means, respectively. The proposed controller placement based on the PSO outperforms nearly 20% and 17% decline in the number of required controllers in comparison with the Varna-based heuristic controller placement method and the CNPA for different scales of topologies, respectively. Moreover, the proposed controller placement method based on the particle swarm optimization enhances the load balancing metric by nearly 6% compared to the Varna-based controller placement method in the case of load balancing scenario in the Interoute and ION topologies, which shows the improvement of the proposed method based on the PSO compared to the Varna-based method. Also, in the proposed controller placement method based on the PSO, the load balancing scenario outperforms the load balancing metric among the assigned controllers by nearly 14%, 22%, 13%, and 18% compared to the <i>K</i>-means-based method in the ION, Interoute, Chinanet, Oxford, and Aarnet topologies. Furthermore, the proposed method achieves nearly 9%, 5%, and 15% decline in the average propagation delay compared to the Varna-, CNPA-, and <i>K</i>-means-based controller placement methods for different topologies. Furthermore, the proposed scheme achieves a higher resilience against controller failures compared to the existing approaches.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.6059","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Software-defined networking (SDN) achieves the programmability of the control plane by separating it from the data forwarding plane to provide flexible management of the network resources. The multicontroller architecture is required to be deployed to enhance the scalability and reliability of the control plane with the network traffic growth. However, the controller placement problem (CPP) is considered an important challenge in software-defined networking, which should be addressed. The number of required controllers and their locations are the important challenges that affect various aspects of the separated controller plane such as the performance metrics, and ability to respond to failures. Also, unappropriated subdomain partitioning of the software-defined network by multicontrollers may cause the unbalanced distribution of controller loads resulting in the reduction of communication performance of the network. In this paper, an optimization subdomain partitioning method based on the particle swarm optimization (PSO) algorithm is presented for deploying the CPP and allocating switches to controllers. The proposed control placement method aims to minimize the cost of the network known as the number of required controllers, to minimize the maximum load imbalance between controllers, and to improve resilience against a failure between each switch and its mapping controller. The presented method is evaluated using two widely used networks from the Internet Topology Zoo such as Aarnet, Oxford, Chinanet, Interoute, and ION topologies to show the scalability of the proposed method. The results show that the proposed method achieves better performance in the required number of controllers, propagation delay, and load balancing among controllers when compared to the controller placement methods based on the Varna, clustering-based network partition algorithm (CNPA), and K-means. Moreover, the proposed method improves load balancing when compared to the controller placement methods based on the Varna, CNPA, and K-means, respectively. The proposed controller placement based on the PSO outperforms nearly 20% and 17% decline in the number of required controllers in comparison with the Varna-based heuristic controller placement method and the CNPA for different scales of topologies, respectively. Moreover, the proposed controller placement method based on the particle swarm optimization enhances the load balancing metric by nearly 6% compared to the Varna-based controller placement method in the case of load balancing scenario in the Interoute and ION topologies, which shows the improvement of the proposed method based on the PSO compared to the Varna-based method. Also, in the proposed controller placement method based on the PSO, the load balancing scenario outperforms the load balancing metric among the assigned controllers by nearly 14%, 22%, 13%, and 18% compared to the K-means-based method in the ION, Interoute, Chinanet, Oxford, and Aarnet topologies. Furthermore, the proposed method achieves nearly 9%, 5%, and 15% decline in the average propagation delay compared to the Varna-, CNPA-, and K-means-based controller placement methods for different topologies. Furthermore, the proposed scheme achieves a higher resilience against controller failures compared to the existing approaches.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信