Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene-Reinforced Thermoplastic Composites

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Raja Subramani, Simon Yishak
{"title":"Utilizing Additive Manufacturing for Fabricating Energy Storage Components From Graphene-Reinforced Thermoplastic Composites","authors":"Raja Subramani,&nbsp;Simon Yishak","doi":"10.1155/adv/6464049","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The quest for efficient and sustainable energy storage solutions has prompted exploration into advanced materials that meet stringent mechanical and thermal requirements. This study investigates graphene-reinforced thermoplastic polymers specifically polyether ether ketone (PEEK), polyethylene terephthalate glycol (PETG), and polylactic acid (PLA) fabricated through additive manufacturing techniques. Traditional materials often suffer from limitations in structural integrity, flexibility, and thermal stability, presenting challenges for their application in energy storage. This research aims to evaluate the mechanical properties of these graphene-reinforced polymers to assess their suitability for energy storage components. Using additive manufacturing, test samples were fabricated, and mechanical testing was conducted to evaluate tensile, flexural, and compression strengths. The results indicate that graphene-reinforced PEEK (G-PEEK) exhibits superior mechanical performance, with an ultimate tensile strength of 120 MPa, Young’s modulus of 1700 MPa, ultimate flexural strength of 160 MPa, and ultimate compression strength of 200 MPa, making it an ideal candidate for applications requiring high structural integrity. Graphene-reinforced PETG (G-PETG) offers a balance of strength and flexibility, with an ultimate tensile strength of 55 MPa, while graphene-reinforced PLA (G-PLA) serves as a cost-effective option, despite lower mechanical properties (ultimate tensile strength of 45 MPa).</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/adv/6464049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/adv/6464049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The quest for efficient and sustainable energy storage solutions has prompted exploration into advanced materials that meet stringent mechanical and thermal requirements. This study investigates graphene-reinforced thermoplastic polymers specifically polyether ether ketone (PEEK), polyethylene terephthalate glycol (PETG), and polylactic acid (PLA) fabricated through additive manufacturing techniques. Traditional materials often suffer from limitations in structural integrity, flexibility, and thermal stability, presenting challenges for their application in energy storage. This research aims to evaluate the mechanical properties of these graphene-reinforced polymers to assess their suitability for energy storage components. Using additive manufacturing, test samples were fabricated, and mechanical testing was conducted to evaluate tensile, flexural, and compression strengths. The results indicate that graphene-reinforced PEEK (G-PEEK) exhibits superior mechanical performance, with an ultimate tensile strength of 120 MPa, Young’s modulus of 1700 MPa, ultimate flexural strength of 160 MPa, and ultimate compression strength of 200 MPa, making it an ideal candidate for applications requiring high structural integrity. Graphene-reinforced PETG (G-PETG) offers a balance of strength and flexibility, with an ultimate tensile strength of 55 MPa, while graphene-reinforced PLA (G-PLA) serves as a cost-effective option, despite lower mechanical properties (ultimate tensile strength of 45 MPa).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信