Eugenia T. Apostolaki, Paul S. Lavery, Victoria Litsi-Mizan, Eduard Serrano, Karina Inostroza, Vasilis Gerakaris, Thanos Dailianis, Julius Glampedakis, Tara Holitzki, Erik Johnson, Miguel A. Mateo, Oscar Serrano
{"title":"Patterns of Carbon and Nitrogen Accumulation in Seagrass (Posidonia oceanica) Meadows of the Eastern Mediterranean Sea","authors":"Eugenia T. Apostolaki, Paul S. Lavery, Victoria Litsi-Mizan, Eduard Serrano, Karina Inostroza, Vasilis Gerakaris, Thanos Dailianis, Julius Glampedakis, Tara Holitzki, Erik Johnson, Miguel A. Mateo, Oscar Serrano","doi":"10.1029/2024JG008163","DOIUrl":null,"url":null,"abstract":"<p>The variability in stocks and accumulation rates of organic carbon (C<sub>org</sub>), nitrogen (N), and carbonate (CaCO<sub>3</sub>) was studied in fifteen <i>Posidonia oceanica</i> meadows spread throughout the South Aegean Sea (Greece). In addition, the abiotic and biotic drivers determining the pattern of variability in the accumulation rates were assessed by exploring the influence of sediment characteristics, seagrass traits, and environmental settings. The meadows supported on average (±STDEV) 14.6 ± 5.0 kg C<sub>org</sub> m<sup>−2</sup>, 0.47 ± 0.17 kg N m<sup>−2</sup>, and 249 ± 210 kg CaCO<sub>3</sub> m<sup>−2</sup> in the top meter of their sediments, with mean accumulation rates over the last 500 years of 33.6 ± 23.6 g C<sub>org</sub> m<sup>−2</sup> yr<sup>−1</sup>, 1.00 ± 0.62 g N m<sup>−2</sup> yr<sup>−1</sup>, and 405 ± 336 g CaCO<sub>3</sub> m<sup>−2</sup> yr<sup>−1</sup> across sites. A redundancy analysis (RDA) explained 70% of the variation in C<sub>org</sub>, N, and CaCO<sub>3</sub> accumulation rates, with three sediment characteristics (i.e., sediment C<sub>org</sub>:N and C<sub>org</sub>:C<sub>inorg</sub> ratios and <i>P</i>. <i>oceanica</i> contribution to the sediment C<sub>org</sub> pool) emerging as the primary set of factors shaping the accumulation of matter, followed by seagrass traits (i.e., leaf biomass and rhizome elongation) and environmental variables (i.e., suspended organic matter). The high degree of variability within the region emphasizes the need for fine-scale assessments to understand the local conditions influencing sequestration. Our findings underscored the critical role of seagrass meadows in carbon and nitrogen sequestration in the region, urging conservation efforts to protect these ecosystems and prevent potential losses of stored carbon and nitrogen following seagrass degradation.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008163","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008163","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The variability in stocks and accumulation rates of organic carbon (Corg), nitrogen (N), and carbonate (CaCO3) was studied in fifteen Posidonia oceanica meadows spread throughout the South Aegean Sea (Greece). In addition, the abiotic and biotic drivers determining the pattern of variability in the accumulation rates were assessed by exploring the influence of sediment characteristics, seagrass traits, and environmental settings. The meadows supported on average (±STDEV) 14.6 ± 5.0 kg Corg m−2, 0.47 ± 0.17 kg N m−2, and 249 ± 210 kg CaCO3 m−2 in the top meter of their sediments, with mean accumulation rates over the last 500 years of 33.6 ± 23.6 g Corg m−2 yr−1, 1.00 ± 0.62 g N m−2 yr−1, and 405 ± 336 g CaCO3 m−2 yr−1 across sites. A redundancy analysis (RDA) explained 70% of the variation in Corg, N, and CaCO3 accumulation rates, with three sediment characteristics (i.e., sediment Corg:N and Corg:Cinorg ratios and P. oceanica contribution to the sediment Corg pool) emerging as the primary set of factors shaping the accumulation of matter, followed by seagrass traits (i.e., leaf biomass and rhizome elongation) and environmental variables (i.e., suspended organic matter). The high degree of variability within the region emphasizes the need for fine-scale assessments to understand the local conditions influencing sequestration. Our findings underscored the critical role of seagrass meadows in carbon and nitrogen sequestration in the region, urging conservation efforts to protect these ecosystems and prevent potential losses of stored carbon and nitrogen following seagrass degradation.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology