{"title":"The structure and density of \n \n k\n $k$\n -product-free sets in the free semigroup and group","authors":"Freddie Illingworth, Lukas Michel, Alex Scott","doi":"10.1112/jlms.70046","DOIUrl":null,"url":null,"abstract":"<p>The free semigroup <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on a finite alphabet <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is the set of all finite words with letters from <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> equipped with the operation of concatenation. A subset <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free if no element of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> can be obtained by concatenating <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> words from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, and strongly <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free if no element of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a (non-trivial) concatenation of at most <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> words from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. We prove that a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subset of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> has upper Banach density at most <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1/\\rho (k)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>ℓ</mi>\n <mo>:</mo>\n <mi>ℓ</mi>\n <mo>∤</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\rho (k) = \\min \\lbrace \\ell \\colon \\ell \\nmid k - 1 \\rbrace$</annotation>\n </semantics></math>. We also determine the structure of the extremal <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subsets for all <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∉</mo>\n <mo>{</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>5</mn>\n <mo>,</mo>\n <mn>7</mn>\n <mo>,</mo>\n <mn>13</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$k \\notin \\lbrace 3, 5, 7, 13 \\rbrace$</annotation>\n </semantics></math>; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free sets with maximum density. Finally, we prove that <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subsets of the free group have upper Banach density at most <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1/\\rho (k)$</annotation>\n </semantics></math>, which confirms a conjecture of Ortega, Rué, and Serra.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The free semigroup on a finite alphabet is the set of all finite words with letters from equipped with the operation of concatenation. A subset of is -product-free if no element of can be obtained by concatenating words from , and strongly -product-free if no element of is a (non-trivial) concatenation of at most words from . We prove that a -product-free subset of has upper Banach density at most , where . We also determine the structure of the extremal -product-free subsets for all ; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly -product-free sets with maximum density. Finally, we prove that -product-free subsets of the free group have upper Banach density at most , which confirms a conjecture of Ortega, Rué, and Serra.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.