The structure and density of k $k$ -product-free sets in the free semigroup and group

IF 1 2区 数学 Q1 MATHEMATICS
Freddie Illingworth, Lukas Michel, Alex Scott
{"title":"The structure and density of \n \n k\n $k$\n -product-free sets in the free semigroup and group","authors":"Freddie Illingworth,&nbsp;Lukas Michel,&nbsp;Alex Scott","doi":"10.1112/jlms.70046","DOIUrl":null,"url":null,"abstract":"<p>The free semigroup <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> on a finite alphabet <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> is the set of all finite words with letters from <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> equipped with the operation of concatenation. A subset <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free if no element of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> can be obtained by concatenating <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> words from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>, and strongly <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free if no element of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a (non-trivial) concatenation of at most <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math> words from <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. We prove that a <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subset of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$\\mathcal {F}$</annotation>\n </semantics></math> has upper Banach density at most <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1/\\rho (k)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mi>min</mi>\n <mo>{</mo>\n <mi>ℓ</mi>\n <mo>:</mo>\n <mi>ℓ</mi>\n <mo>∤</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$\\rho (k) = \\min \\lbrace \\ell \\colon \\ell \\nmid k - 1 \\rbrace$</annotation>\n </semantics></math>. We also determine the structure of the extremal <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subsets for all <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∉</mo>\n <mo>{</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>5</mn>\n <mo>,</mo>\n <mn>7</mn>\n <mo>,</mo>\n <mn>13</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$k \\notin \\lbrace 3, 5, 7, 13 \\rbrace$</annotation>\n </semantics></math>; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free sets with maximum density. Finally, we prove that <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-product-free subsets of the free group have upper Banach density at most <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>ρ</mi>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$1/\\rho (k)$</annotation>\n </semantics></math>, which confirms a conjecture of Ortega, Rué, and Serra.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70046","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70046","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The free semigroup F $\mathcal {F}$ on a finite alphabet A $\mathcal {A}$ is the set of all finite words with letters from A $\mathcal {A}$ equipped with the operation of concatenation. A subset S $S$ of F $\mathcal {F}$ is k $k$ -product-free if no element of S $S$ can be obtained by concatenating k $k$ words from S $S$ , and strongly k $k$ -product-free if no element of S $S$ is a (non-trivial) concatenation of at most k $k$ words from S $S$ . We prove that a k $k$ -product-free subset of F $\mathcal {F}$ has upper Banach density at most 1 / ρ ( k ) $1/\rho (k)$ , where ρ ( k ) = min { : k 1 } $\rho (k) = \min \lbrace \ell \colon \ell \nmid k - 1 \rbrace$ . We also determine the structure of the extremal k $k$ -product-free subsets for all k { 3 , 5 , 7 , 13 } $k \notin \lbrace 3, 5, 7, 13 \rbrace$ ; a special case of this proves a conjecture of Leader, Letzter, Narayanan, and Walters. We further determine the structure of all strongly k $k$ -product-free sets with maximum density. Finally, we prove that k $k$ -product-free subsets of the free group have upper Banach density at most 1 / ρ ( k ) $1/\rho (k)$ , which confirms a conjecture of Ortega, Rué, and Serra.

自由半群和群中 k $k$ 无积集的结构和密度
有限字母a $\mathcal {A}$上的自由半群F $\mathcal {F}$是所有具有a $\mathcal {A}$中字母的有限单词的集合,该集合具有连接操作。如果不能通过连接k $k$得到S $S$的任何元素,则F $\mathcal {F}$的子集S $S$为k $k$ -product-free来自S $S$,如果S $S$的任何元素都不是S $S$中最多k $k$个单词的(非平凡的)连接,则k $k$ -product-free。我们证明了F $\mathcal {F}$的k $k$ -product-free子集的上巴拿赫密度不超过1 / ρ (k) $1/\rho (k)$,其中ρ (k) = min,{∑,∑,∑∤k−1}$\rho (k) = \min \lbrace \ell \colon \ell \nmid k - 1 \rbrace$。我们还确定了所有k∈的极值k $k$ -product-free子集的结构。13 {}$k \notin \lbrace 3, 5, 7, 13 \rbrace$;一个特例证明了Leader、Letzter、Narayanan和Walters的一个猜想。我们进一步确定了密度最大的所有强k $k$ -product-free集的结构。最后,我们证明了自由群的k $k$ -product-free子集的上Banach密度不超过1 / ρ (k) $1/\rho (k)$,这证实了Ortega、ru和Serra的一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信