Superhydrophobic Coatings with Synergistically Enhanced Anti/Deicing Performance by Optically/Electrically Assisted Heating

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihong Huang, Yanlong Zhan, Wen Li, Xiang Li, Alidad Amirfazli
{"title":"Superhydrophobic Coatings with Synergistically Enhanced Anti/Deicing Performance by Optically/Electrically Assisted Heating","authors":"Zhihong Huang,&nbsp;Yanlong Zhan,&nbsp;Wen Li,&nbsp;Xiang Li,&nbsp;Alidad Amirfazli","doi":"10.1002/adem.202401627","DOIUrl":null,"url":null,"abstract":"<p>\nSurface icing issues have a significant impact on industries such as aviation, transportation, and construction. Superhydrophobic surfaces can delay ice formation due to their liquid-repellent properties, but their effectiveness is not pronounced in extremely cold environments. Electric heating coatings can effectively prevent ice formation, but they have limitations in environments with insufficient electrical energy supply. The anti-icing effect of photothermal superhydrophobic coatings is restricted under conditions of insufficient sunlight. To enhance the ice-preventing performance of superhydrophobic coatings in extremely cold environments, this article employs a template spraying method to prepare a carbon black and graphene composite coating that provides superhydrophobic passive anti-icing and photo/electrothermal active deicing capabilities. The micro-nanostructured superhydrophobic surface exhibits exceptional ice-preventing performance. The excellent electrothermal and photothermal performance, along with high energy conversion efficiency, significantly enhance the coating's deicing efficiency. Under the synergistic effect of solar and electrical energy, the ice layer is completely melted within just 135 s. Furthermore, the material possesses excellent durability (resistance to mechanical wear, acid and alkali corrosion, and UV aging), as well as thermal stability. This research provides new avenues and insights for the development of advanced anti-icing and deicing materials for applications in aviation, transportation, construction, and other fields.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401627","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface icing issues have a significant impact on industries such as aviation, transportation, and construction. Superhydrophobic surfaces can delay ice formation due to their liquid-repellent properties, but their effectiveness is not pronounced in extremely cold environments. Electric heating coatings can effectively prevent ice formation, but they have limitations in environments with insufficient electrical energy supply. The anti-icing effect of photothermal superhydrophobic coatings is restricted under conditions of insufficient sunlight. To enhance the ice-preventing performance of superhydrophobic coatings in extremely cold environments, this article employs a template spraying method to prepare a carbon black and graphene composite coating that provides superhydrophobic passive anti-icing and photo/electrothermal active deicing capabilities. The micro-nanostructured superhydrophobic surface exhibits exceptional ice-preventing performance. The excellent electrothermal and photothermal performance, along with high energy conversion efficiency, significantly enhance the coating's deicing efficiency. Under the synergistic effect of solar and electrical energy, the ice layer is completely melted within just 135 s. Furthermore, the material possesses excellent durability (resistance to mechanical wear, acid and alkali corrosion, and UV aging), as well as thermal stability. This research provides new avenues and insights for the development of advanced anti-icing and deicing materials for applications in aviation, transportation, construction, and other fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信