{"title":"Physical Drivers and Biogeochemical Effects of the Projected Decline of the Shelfbreak Jet in the Northwest North Atlantic Ocean","authors":"Lina Garcia-Suarez, Katja Fennel","doi":"10.1029/2024MS004580","DOIUrl":null,"url":null,"abstract":"<p>A solid understanding of the mechanisms behind the presently observed, rapid warming of the northwest North Atlantic Continental Shelf and their biogeochemical impacts is lacking. We hypothesize that a weakening of the Labrador Current System (LCS), especially the shelfbreak jet along the Scotian Shelf, is contributing to these changes and that the future evolution of the LCS will be key to accurate projections. Here we analyze the response of a transient simulation of the high-resolution GFDL Climate Model 2.6 (CM2.6) which realistically simulates the regional circulation but includes only a highly simplified representation of ocean biogeochemistry. Then, we use the CM2.6 to force a medium-complexity regional biogeochemical ocean model, the Atlantic Canada Model, to obtain projections of nutrient availability on the shelf. In the simulation, the shelfbreak jet weakens because of a reduction of the along-shelf pressure gradient caused by a buoyancy gain of the upper water column along the shelf edge. This buoyancy gain is the result of warmer waters along the continental slope. Importantly, we find that the temperature-based criterion used commonly to pinpoint the location of the Gulf Stream is misleading, causing an overestimation of the northward migration of the Gulf Stream. A fixed isotherm may indicate northward movement as a result of basin-wide warming and not necessarily reflect changes in dynamics. The combination of the weakened shelfbreak jet and a lowering of nutrient concentrations in its source water reduce nutrient availability on the northwest North Atlantic shelf by one third by 2100 in the projection analyzed.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004580","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004580","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A solid understanding of the mechanisms behind the presently observed, rapid warming of the northwest North Atlantic Continental Shelf and their biogeochemical impacts is lacking. We hypothesize that a weakening of the Labrador Current System (LCS), especially the shelfbreak jet along the Scotian Shelf, is contributing to these changes and that the future evolution of the LCS will be key to accurate projections. Here we analyze the response of a transient simulation of the high-resolution GFDL Climate Model 2.6 (CM2.6) which realistically simulates the regional circulation but includes only a highly simplified representation of ocean biogeochemistry. Then, we use the CM2.6 to force a medium-complexity regional biogeochemical ocean model, the Atlantic Canada Model, to obtain projections of nutrient availability on the shelf. In the simulation, the shelfbreak jet weakens because of a reduction of the along-shelf pressure gradient caused by a buoyancy gain of the upper water column along the shelf edge. This buoyancy gain is the result of warmer waters along the continental slope. Importantly, we find that the temperature-based criterion used commonly to pinpoint the location of the Gulf Stream is misleading, causing an overestimation of the northward migration of the Gulf Stream. A fixed isotherm may indicate northward movement as a result of basin-wide warming and not necessarily reflect changes in dynamics. The combination of the weakened shelfbreak jet and a lowering of nutrient concentrations in its source water reduce nutrient availability on the northwest North Atlantic shelf by one third by 2100 in the projection analyzed.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.