An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Bozhou Chen, Keyan Fang, Zepeng Mei, Tinghai Ou, Feifei Zhou, Hao Wu, Zheng Zhao, Deliang Chen
{"title":"An Elevated Influence of the Low-Latitude Drivers on the East Asian Winter Monsoon After Around 1990","authors":"Bozhou Chen,&nbsp;Keyan Fang,&nbsp;Zepeng Mei,&nbsp;Tinghai Ou,&nbsp;Feifei Zhou,&nbsp;Hao Wu,&nbsp;Zheng Zhao,&nbsp;Deliang Chen","doi":"10.1002/joc.8681","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Current East Asian winter monsoon (EAWM) indices effectively depict the associated high- and low-latitude atmospheric circulations. However, the spatial dynamics of the winter coldness within the monsoon domain are not well adequately represented by EAWM indices. We introduce a novel approach to classify winter temperatures based on both their co-variability and their mean values. We classified the EAWM domain into three distinct modes: northern (ranging from −27°C to −15°C), central (−14°C to 5°C), and southern (6°C to 27°C). The northern mode, characterised by intense coldness, correlates with a strengthened westerlies that traps Arctic cold air masses during the positive phase of the Arctic Oscillation (AO). In contrast, the southern mode is primarily influenced by low-latitude oceanic and atmospheric patterns, particularly for near-coast areas. The central mode, representing an interplay of both high and low-latitude processes, encapsulates the comprehensive characteristics of the EAWM. Our analysis reveals a notable shift in the relationships among the northern, central, and southern modes around 1990. Prior to this year, the EAWM was predominantly influenced by northern atmospheric patterns, while there is a discernible increase in the influence of low-latitude drivers afterwards. This shift may be linked to the significant warming in the western Pacific and Indian Oceans, underscoring the heightened role of low-latitude drivers on the EAWM.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"6029-6039"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8681","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Current East Asian winter monsoon (EAWM) indices effectively depict the associated high- and low-latitude atmospheric circulations. However, the spatial dynamics of the winter coldness within the monsoon domain are not well adequately represented by EAWM indices. We introduce a novel approach to classify winter temperatures based on both their co-variability and their mean values. We classified the EAWM domain into three distinct modes: northern (ranging from −27°C to −15°C), central (−14°C to 5°C), and southern (6°C to 27°C). The northern mode, characterised by intense coldness, correlates with a strengthened westerlies that traps Arctic cold air masses during the positive phase of the Arctic Oscillation (AO). In contrast, the southern mode is primarily influenced by low-latitude oceanic and atmospheric patterns, particularly for near-coast areas. The central mode, representing an interplay of both high and low-latitude processes, encapsulates the comprehensive characteristics of the EAWM. Our analysis reveals a notable shift in the relationships among the northern, central, and southern modes around 1990. Prior to this year, the EAWM was predominantly influenced by northern atmospheric patterns, while there is a discernible increase in the influence of low-latitude drivers afterwards. This shift may be linked to the significant warming in the western Pacific and Indian Oceans, underscoring the heightened role of low-latitude drivers on the EAWM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信