Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns
{"title":"Can biostimulants and tillage rotations improve dryland crop productivity and soil microbes?","authors":"Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns","doi":"10.1002/agj2.21738","DOIUrl":null,"url":null,"abstract":"<p>Soil microbes are essential for soil nutrient cycling. However, frequent tillage and the use of synthetic agrochemicals can reduce soil microbial diversity and enzyme activity. In this study, the effects of four tillage treatments (mouldboard plough, shallow tine-tillage, no-tillage, and tillage rotation) and two rates of synthetic agrochemicals (standard and reduced, with biostimulants) on soil microbial diversity and enzyme activity were investigated between 2018 and 2020 in a Mediterranean climate zone in South Africa. It was hypothesized that a reduction in tillage frequency and quantity of synthetic agrochemical application would lead to greater microbial diversity and enzyme activity. Soil samples were collected from the 0- to 150-mm layer of a field trial under a dryland crop rotation system. Soil microbial species richness and abundance were assessed using the Shannon–Wiener diversity and evenness indices. The activities of four microbial enzymes—β-glucosidase, acid phosphatase, alkaline phosphatase, and urease—were used to evaluate ecosystem functioning. The combined effects of tillage rotation with a shallow tine implement and the application of biostimulants failed to significantly improve soil microbial diversity, enzyme activity, and crop productivity relative to other treatments. However, the combination did not reduce the wheat (<i>Triticum aestivum</i>) grain yield and quality, and soil biological parameters. Furthermore, the less intensive tillage treatments, ST, NT, and ST-NT-NT-NT, resulted in higher enzyme activity than the mouldboard treatment. Therefore, we suggest that combining non-intensive tillage with reduced synthetic agrochemical use can be a safer, more environmentally friendly alternative to intensive tillage and high agrochemical application in dryland cropping systems.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"117 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agj2.21738","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21738","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil microbes are essential for soil nutrient cycling. However, frequent tillage and the use of synthetic agrochemicals can reduce soil microbial diversity and enzyme activity. In this study, the effects of four tillage treatments (mouldboard plough, shallow tine-tillage, no-tillage, and tillage rotation) and two rates of synthetic agrochemicals (standard and reduced, with biostimulants) on soil microbial diversity and enzyme activity were investigated between 2018 and 2020 in a Mediterranean climate zone in South Africa. It was hypothesized that a reduction in tillage frequency and quantity of synthetic agrochemical application would lead to greater microbial diversity and enzyme activity. Soil samples were collected from the 0- to 150-mm layer of a field trial under a dryland crop rotation system. Soil microbial species richness and abundance were assessed using the Shannon–Wiener diversity and evenness indices. The activities of four microbial enzymes—β-glucosidase, acid phosphatase, alkaline phosphatase, and urease—were used to evaluate ecosystem functioning. The combined effects of tillage rotation with a shallow tine implement and the application of biostimulants failed to significantly improve soil microbial diversity, enzyme activity, and crop productivity relative to other treatments. However, the combination did not reduce the wheat (Triticum aestivum) grain yield and quality, and soil biological parameters. Furthermore, the less intensive tillage treatments, ST, NT, and ST-NT-NT-NT, resulted in higher enzyme activity than the mouldboard treatment. Therefore, we suggest that combining non-intensive tillage with reduced synthetic agrochemical use can be a safer, more environmentally friendly alternative to intensive tillage and high agrochemical application in dryland cropping systems.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.