{"title":"The Noether–Lefschetz locus of surfaces in \n \n \n P\n 3\n \n ${\\mathbb {P}}^3$\n formed by determinantal surfaces","authors":"Manuel Leal, César Lozano Huerta, Montserrat Vite","doi":"10.1002/mana.202400132","DOIUrl":null,"url":null,"abstract":"<p>We compute the dimension of certain components of the family of smooth determinantal degree <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> surfaces in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>3</mn>\n </msup>\n <annotation>${\\mathbb {P}}^3$</annotation>\n </semantics></math>, and show that each of them is the closure of a component of the Noether–Lefschetz locus <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mi>L</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$NL(d)$</annotation>\n </semantics></math>. Our computations exhibit that smooth determinantal surfaces in <span></span><math>\n <semantics>\n <msup>\n <mi>P</mi>\n <mn>3</mn>\n </msup>\n <annotation>${\\mathbb {P}}^3$</annotation>\n </semantics></math> of degree 4 form a divisor in <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n </mrow>\n <msub>\n <mi>O</mi>\n <msup>\n <mi>P</mi>\n <mn>3</mn>\n </msup>\n </msub>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mn>4</mn>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$|\\mathcal {O}_{{\\mathbb {P}}^3}(4)|$</annotation>\n </semantics></math> with five irreducible components. We will compute the degrees of each of these components: <span></span><math>\n <semantics>\n <mrow>\n <mn>320</mn>\n <mo>,</mo>\n <mn>2508</mn>\n <mo>,</mo>\n <mn>136512</mn>\n <mo>,</mo>\n <mn>38475</mn>\n </mrow>\n <annotation>$320,2508,136512,38475$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mn>320112</mn>\n </mrow>\n <annotation>$\\hskip.001pt 320112$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4671-4688"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We compute the dimension of certain components of the family of smooth determinantal degree surfaces in , and show that each of them is the closure of a component of the Noether–Lefschetz locus . Our computations exhibit that smooth determinantal surfaces in of degree 4 form a divisor in with five irreducible components. We will compute the degrees of each of these components: , and .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index