Rational surfaces with a non-arithmetic automorphism group

IF 0.8 3区 数学 Q2 MATHEMATICS
Jennifer Li, Sebastián Torres
{"title":"Rational surfaces with a non-arithmetic automorphism group","authors":"Jennifer Li,&nbsp;Sebastián Torres","doi":"10.1112/blms.13175","DOIUrl":null,"url":null,"abstract":"<p>In [<i>Algebraic surfaces and hyperbolic geometry</i>, Cambridge University Press, Cambridge, 2012], Totaro gave examples of a K3 surface such that its automorphism group is not commensurable with an arithmetic group, answering a question of Mazur in Section 7 of [Bull. Amer. Math. Soc. (N.S.) <b>29</b> (1993), no. 1, 14–50]. We give examples of rational surfaces with the same property. Our examples <span></span><math>\n <semantics>\n <mi>Y</mi>\n <annotation>$Y$</annotation>\n </semantics></math> are Looijenga pairs, that is, there is a connected singular nodal curve <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>⊂</mo>\n <mi>Y</mi>\n </mrow>\n <annotation>$D \\subset Y$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n <mi>Y</mi>\n </msub>\n <mo>+</mo>\n <mi>D</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$K_{Y} + D = 0$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3895-3904"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13175","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13175","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In [Algebraic surfaces and hyperbolic geometry, Cambridge University Press, Cambridge, 2012], Totaro gave examples of a K3 surface such that its automorphism group is not commensurable with an arithmetic group, answering a question of Mazur in Section 7 of [Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 14–50]. We give examples of rational surfaces with the same property. Our examples Y $Y$ are Looijenga pairs, that is, there is a connected singular nodal curve D Y $D \subset Y$ such that K Y + D = 0 $K_{Y} + D = 0$ .

Abstract Image

具有非算术自同构群的有理曲面
托塔罗在[代数曲面与双曲几何,剑桥大学出版社,剑桥,2012]中举例说明了K3曲面的自变群与算术群不可通约,回答了马祖尔在[Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 14-50]第7节中提出的问题。我们举例说明具有相同性质的有理曲面。我们的例子 Y $Y$ 是 Looijenga 对,即存在一条连通的奇异结点曲线 D ⊂ Y $D (子集 Y$ ),使得 K Y + D = 0 $K_{Y} + D = 0$ .+ D = 0$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信