Jie Zhao, Zhi Tang, Yuchu Jiang, Yijian Yang, Junbo Liao, Zhangjie Su, Ahsan Muhammad Usman, Xiaoyu Chen, Gelei Xiao
{"title":"Oxidative stress in hydrocephalus: A new potential therapeutic target","authors":"Jie Zhao, Zhi Tang, Yuchu Jiang, Yijian Yang, Junbo Liao, Zhangjie Su, Ahsan Muhammad Usman, Xiaoyu Chen, Gelei Xiao","doi":"10.1002/brx2.70008","DOIUrl":null,"url":null,"abstract":"<p>Hydrocephalus is an abnormal accumulation of cerebrospinal fluid within the skull for several reasons, such as cerebrospinal fluid overproduction, circulatory obstruction, and malabsorption. Excess fluid causes the ventricular system and subarachnoid space to enlarge due to the squeezing of cerebrospinal fluid. Hydrocephalus is clinically manifested by increased intracranial pressure and impaired brain function. It is a neurological disease with a variety of complications that affect the body and require long-term and continuous treatment; however, current treatment methods are relatively limited, whether medical or surgical. Studies have shown that oxidative stress plays an important role in the formation and development of hydrocephalus, but it has not been systematically reviewed in current studies. In this paper, oxidative stress in hydrocephalus formation and its potential role were systematically reviewed, including the mechanism of oxidative stress, related signaling pathways, and pathological changes in oxidative stress formation. The purpose of this paper is to illustrate the possibility of oxidative stress as a new therapeutic target of hydrocephalus treatment, expecting that it will be helpful for future research.</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrocephalus is an abnormal accumulation of cerebrospinal fluid within the skull for several reasons, such as cerebrospinal fluid overproduction, circulatory obstruction, and malabsorption. Excess fluid causes the ventricular system and subarachnoid space to enlarge due to the squeezing of cerebrospinal fluid. Hydrocephalus is clinically manifested by increased intracranial pressure and impaired brain function. It is a neurological disease with a variety of complications that affect the body and require long-term and continuous treatment; however, current treatment methods are relatively limited, whether medical or surgical. Studies have shown that oxidative stress plays an important role in the formation and development of hydrocephalus, but it has not been systematically reviewed in current studies. In this paper, oxidative stress in hydrocephalus formation and its potential role were systematically reviewed, including the mechanism of oxidative stress, related signaling pathways, and pathological changes in oxidative stress formation. The purpose of this paper is to illustrate the possibility of oxidative stress as a new therapeutic target of hydrocephalus treatment, expecting that it will be helpful for future research.