Convergence and nonconvergence in a nonlocal gradient flow

IF 1 2区 数学 Q1 MATHEMATICS
Sangmin Park, Robert L. Pego
{"title":"Convergence and nonconvergence in a nonlocal gradient flow","authors":"Sangmin Park,&nbsp;Robert L. Pego","doi":"10.1112/jlms.70047","DOIUrl":null,"url":null,"abstract":"<p>We study the asymptotic convergence as <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$t\\rightarrow \\infty$</annotation>\n </semantics></math> of solutions of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>∂</mi>\n <mi>t</mi>\n </msub>\n <mi>u</mi>\n <mo>=</mo>\n <mo>−</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>∫</mo>\n <mi>f</mi>\n <mrow>\n <mo>(</mo>\n <mi>u</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\partial _t u=-f(u)+\\int f(u)$</annotation>\n </semantics></math>, a nonlocal differential equation that is formally a gradient flow in a constant-mass subspace of <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> arising from simplified models of phase transitions. In case the solution takes finitely many values, we provide a new proof of stabilization that uses a Łojasiewicz-type gradient inequality near a degenerate curve of equilibria. Solutions with infinitely many values in general <i>need not</i> converge to equilibrium, however, which we demonstrate by providing counterexamples for piecewise linear and cubic functions <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math>. Curiously, the exponential <i>rate</i> of convergence in the finite-value case can jump from order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$O(1)$</annotation>\n </semantics></math> to arbitrarily small values upon perturbation of parameters.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70047","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic convergence as t $t\rightarrow \infty$ of solutions of t u = f ( u ) + f ( u ) $\partial _t u=-f(u)+\int f(u)$ , a nonlocal differential equation that is formally a gradient flow in a constant-mass subspace of L 2 $L^2$ arising from simplified models of phase transitions. In case the solution takes finitely many values, we provide a new proof of stabilization that uses a Łojasiewicz-type gradient inequality near a degenerate curve of equilibria. Solutions with infinitely many values in general need not converge to equilibrium, however, which we demonstrate by providing counterexamples for piecewise linear and cubic functions f $f$ . Curiously, the exponential rate of convergence in the finite-value case can jump from order O ( 1 ) $O(1)$ to arbitrarily small values upon perturbation of parameters.

Abstract Image

非局部梯度流的收敛与不收敛
我们研究了 ∂ t u = - f ( u ) + ∫ f ( u ) $\partial _t u=-f(u)+\int f(u)$ 的解在 t → ∞ $t\rightarrow \infty$ 时的渐近收敛性,这是一个非局部微分方程,形式上是相变简化模型产生的 L 2 $L^2$ 恒质量子空间中的梯度流。在求解取值有限的情况下,我们提供了一种新的稳定证明,它使用了退化平衡曲线附近的 Łojasiewicz 型梯度不等式。然而,具有无限多值的解一般不需要收敛到均衡,我们通过提供片断线性和立方函数 f $f$ 的反例证明了这一点。奇怪的是,在有限值情况下,指数收敛速率可以从 O ( 1 ) $O(1)$跃迁到参数扰动后的任意小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信