Quantitative assessment of CO2 leakage risk in geologic carbon storage management

IF 2.7 4区 环境科学与生态学 Q3 ENERGY & FUELS
Meng Jing, Qi Li, Guizhen Liu, Quan Xue
{"title":"Quantitative assessment of CO2 leakage risk in geologic carbon storage management","authors":"Meng Jing,&nbsp;Qi Li,&nbsp;Guizhen Liu,&nbsp;Quan Xue","doi":"10.1002/ghg.2315","DOIUrl":null,"url":null,"abstract":"<p>Large-scale geological storage of carbon dioxide (CO<sub>2</sub>) is indispensable for mitigating climate change but faces significant challenges, especially in the accurate quantitative assessment of leakage risks to ensure long-term security. Given these circumstances, this paper proposes an innovative approach for quantitatively assessing CO<sub>2</sub> leakage risk to address the previous limitations of limited accuracy and insufficient data. We construct a fault tree and transform it into a Bayesian network–directed acyclic graph, and then use judgment sets along with fuzzy set theory to obtain prior probabilities of root nodes. The feature, event, and process method was utilized to identify key components and subsequently determine the conditional probability table (CPT) of the leaf node. The subjective experience assessments from experts are defuzzified to obtain the CPTs of intermediate nodes. The obtained basic probability parameters are input into the directed acyclic graph to complete the model construction. After calculating the leakage probability using this model, it is combined with the severity of impacts to conduct a comprehensive risk assessment. Furthermore, critical CO<sub>2</sub> risk sources can be determined through posterior probability calculations when intermediate nodes are designated as deterministic risk events. The gradual implementation process of the proposed model is demonstrated via a typical case study. The results indicate an overall CO<sub>2</sub> leakage probability of 29%, with probabilities of leakage along faults/fractures, caprock, and well identified as 32%, 28%, and 19%, respectively. The project is categorized as a medium-low risk level. When leakage is confirmed, tectonic movement, thickness, and delamination at interface connections/the presence of cracks are the critical risk sources, and measures to mitigate key risks are outlined. The identified key risk factors conform to empirical evidence and previous research, validating the accuracy of the model. This study is instrumental in CO<sub>2</sub> geological storage risk assessment and scalable development program design. © 2024 Society of Chemical Industry and John Wiley &amp; Sons, Ltd.</p>","PeriodicalId":12796,"journal":{"name":"Greenhouse Gases: Science and Technology","volume":"14 6","pages":"1068-1091"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Greenhouse Gases: Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ghg.2315","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale geological storage of carbon dioxide (CO2) is indispensable for mitigating climate change but faces significant challenges, especially in the accurate quantitative assessment of leakage risks to ensure long-term security. Given these circumstances, this paper proposes an innovative approach for quantitatively assessing CO2 leakage risk to address the previous limitations of limited accuracy and insufficient data. We construct a fault tree and transform it into a Bayesian network–directed acyclic graph, and then use judgment sets along with fuzzy set theory to obtain prior probabilities of root nodes. The feature, event, and process method was utilized to identify key components and subsequently determine the conditional probability table (CPT) of the leaf node. The subjective experience assessments from experts are defuzzified to obtain the CPTs of intermediate nodes. The obtained basic probability parameters are input into the directed acyclic graph to complete the model construction. After calculating the leakage probability using this model, it is combined with the severity of impacts to conduct a comprehensive risk assessment. Furthermore, critical CO2 risk sources can be determined through posterior probability calculations when intermediate nodes are designated as deterministic risk events. The gradual implementation process of the proposed model is demonstrated via a typical case study. The results indicate an overall CO2 leakage probability of 29%, with probabilities of leakage along faults/fractures, caprock, and well identified as 32%, 28%, and 19%, respectively. The project is categorized as a medium-low risk level. When leakage is confirmed, tectonic movement, thickness, and delamination at interface connections/the presence of cracks are the critical risk sources, and measures to mitigate key risks are outlined. The identified key risk factors conform to empirical evidence and previous research, validating the accuracy of the model. This study is instrumental in CO2 geological storage risk assessment and scalable development program design. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Greenhouse Gases: Science and Technology
Greenhouse Gases: Science and Technology ENERGY & FUELS-ENGINEERING, ENVIRONMENTAL
CiteScore
4.90
自引率
4.50%
发文量
55
审稿时长
3 months
期刊介绍: Greenhouse Gases: Science and Technology is a new online-only scientific journal dedicated to the management of greenhouse gases. The journal will focus on methods for carbon capture and storage (CCS), as well as utilization of carbon dioxide (CO2) as a feedstock for fuels and chemicals. GHG will also provide insight into strategies to mitigate emissions of other greenhouse gases. Significant advances will be explored in critical reviews, commentary articles and short communications of broad interest. In addition, the journal will offer analyses of relevant economic and political issues, industry developments and case studies. Greenhouse Gases: Science and Technology is an exciting new online-only journal published as a co-operative venture of the SCI (Society of Chemical Industry) and John Wiley & Sons, Ltd
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信