Detecting the Vertical Structure of Extreme Precipitation in the Headwater Area of Yellow River Using the Dual-Frequency Precipitation Radar Onboard the Global Precipitation Measurement Mission

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jia Song, Weiqing Qi, Yi Lyu, Haiwei Zhang, Yang Song, Tao Shi, Yixin Wen, Bin Yong
{"title":"Detecting the Vertical Structure of Extreme Precipitation in the Headwater Area of Yellow River Using the Dual-Frequency Precipitation Radar Onboard the Global Precipitation Measurement Mission","authors":"Jia Song,&nbsp;Weiqing Qi,&nbsp;Yi Lyu,&nbsp;Haiwei Zhang,&nbsp;Yang Song,&nbsp;Tao Shi,&nbsp;Yixin Wen,&nbsp;Bin Yong","doi":"10.1002/joc.8675","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the context of global warming, the rise in extreme precipitation events in high-altitude headwater areas has introduced greater hydrological uncertainty. However, the limited understanding of the physical mechanisms driving extreme precipitation in these areas hinders efforts to mitigate the potential rise in future precipitation risks. This study analysed the extreme precipitation events in the headwater area of the Yellow River (HAYR) from May to September each year from 2015 to 2020 using satellite-based data from Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Core Observatory and Integrated Multi-satellite Retrievals for GPM (IMERG). The results show that stratiform precipitation (SP) determines the spatial extent of extreme precipitation events, while convective precipitation (CP) largely affects the rainfall intensity. Statistical analysis from different extreme precipitation events indicates that the rain rate of CP is 2 to 3 times higher than that of SP, thus zones of intense precipitation in the study area are normally dominated by CP. Vertically, the topographic lifting in complex mountainous regions exerts opposite effects on the precipitation rates of SP and CP, weakening the precipitation intensity of SP while enhancing that of CP. The peak precipitation rate in the midstream and downstream regions is observed at approximately 5 km, whereas the upstream region displays a distinctive double-peaked distribution, with one peak at 8.5 km and another near the surface. This study provides a better understanding of the interior structure evolution process of plateau precipitation, as well as the associated microphysical properties, and highlights some insights to improve microphysical parameterization in the future model developments.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"5918-5933"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8675","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of global warming, the rise in extreme precipitation events in high-altitude headwater areas has introduced greater hydrological uncertainty. However, the limited understanding of the physical mechanisms driving extreme precipitation in these areas hinders efforts to mitigate the potential rise in future precipitation risks. This study analysed the extreme precipitation events in the headwater area of the Yellow River (HAYR) from May to September each year from 2015 to 2020 using satellite-based data from Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) Core Observatory and Integrated Multi-satellite Retrievals for GPM (IMERG). The results show that stratiform precipitation (SP) determines the spatial extent of extreme precipitation events, while convective precipitation (CP) largely affects the rainfall intensity. Statistical analysis from different extreme precipitation events indicates that the rain rate of CP is 2 to 3 times higher than that of SP, thus zones of intense precipitation in the study area are normally dominated by CP. Vertically, the topographic lifting in complex mountainous regions exerts opposite effects on the precipitation rates of SP and CP, weakening the precipitation intensity of SP while enhancing that of CP. The peak precipitation rate in the midstream and downstream regions is observed at approximately 5 km, whereas the upstream region displays a distinctive double-peaked distribution, with one peak at 8.5 km and another near the surface. This study provides a better understanding of the interior structure evolution process of plateau precipitation, as well as the associated microphysical properties, and highlights some insights to improve microphysical parameterization in the future model developments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信