Climate Extremes in the New Zealand Region: Mechanisms, Impacts and Attribution

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
M. James Salinger, Kevin E. Trenberth, Howard J. Diamond, Erik Behrens, B. Blair Fitzharris, Nicholas Herold, Robert O. Smith, Phil J. Sutton, Michael C. T. Trought
{"title":"Climate Extremes in the New Zealand Region: Mechanisms, Impacts and Attribution","authors":"M. James Salinger,&nbsp;Kevin E. Trenberth,&nbsp;Howard J. Diamond,&nbsp;Erik Behrens,&nbsp;B. Blair Fitzharris,&nbsp;Nicholas Herold,&nbsp;Robert O. Smith,&nbsp;Phil J. Sutton,&nbsp;Michael C. T. Trought","doi":"10.1002/joc.8667","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As global surface temperatures have increased with human-induced climate change, notable compound climate extremes in the New Zealand (NZ) region associated with atmospheric heatwaves (AHWs) and marine heatwaves (MHWs) have occurred in the past 6 years. Natural modes of variability that also played a key role regionally include the Interdecadal Pacific Oscillation (IPO), El Niño/Southern Oscillation (ENSO) and changes in the location and strength of the westerlies as seen in the Southern Annular Mode (SAM). Along with mean warming of 0.8°C since 1900, a negative phase of the IPO, La Niña phase of ENSO and a strongly positive SAM contributed to five compound warm extremes in the extended austral summer seasons (NDJFM) of 1934/35, 2017/18, 2018/19, 2021/22 and 2022/23. These are the most intense coupled ocean/atmosphere (MHWs/AHWs) heatwaves on record with average temperature anomalies over land and sea +0.8°C to 1.1°C above 1991–2020 averages. The number of days above 25°C and above the 90th percentile of maximum temperature has increased, while the number of nights below 0°C and below the 10th percentile has decreased. Coastal waters around NZ recently experienced their longest MHW in the satellite era (1982-present) of 289 days through 2023. The estimated recurrence interval reduces from 1 in 300-years for the AHW event during the 1930s climate to a 1 in 25-year event for the most recent decade. Consequences include major loss of ice of almost one-third volume from Southern Alps glaciers from 2017 to 2021 with rapid melt of seasonal snow in all four cases. Above-average temperatures in the December/January grape flowering period resulted in advances in veraison (the onset of ripening); and higher-than-average grape yields in 2022 and 2023 vintages. Marine impacts include widespread sea-sponge bleaching around northern and southern NZ.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"5809-5824"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8667","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As global surface temperatures have increased with human-induced climate change, notable compound climate extremes in the New Zealand (NZ) region associated with atmospheric heatwaves (AHWs) and marine heatwaves (MHWs) have occurred in the past 6 years. Natural modes of variability that also played a key role regionally include the Interdecadal Pacific Oscillation (IPO), El Niño/Southern Oscillation (ENSO) and changes in the location and strength of the westerlies as seen in the Southern Annular Mode (SAM). Along with mean warming of 0.8°C since 1900, a negative phase of the IPO, La Niña phase of ENSO and a strongly positive SAM contributed to five compound warm extremes in the extended austral summer seasons (NDJFM) of 1934/35, 2017/18, 2018/19, 2021/22 and 2022/23. These are the most intense coupled ocean/atmosphere (MHWs/AHWs) heatwaves on record with average temperature anomalies over land and sea +0.8°C to 1.1°C above 1991–2020 averages. The number of days above 25°C and above the 90th percentile of maximum temperature has increased, while the number of nights below 0°C and below the 10th percentile has decreased. Coastal waters around NZ recently experienced their longest MHW in the satellite era (1982-present) of 289 days through 2023. The estimated recurrence interval reduces from 1 in 300-years for the AHW event during the 1930s climate to a 1 in 25-year event for the most recent decade. Consequences include major loss of ice of almost one-third volume from Southern Alps glaciers from 2017 to 2021 with rapid melt of seasonal snow in all four cases. Above-average temperatures in the December/January grape flowering period resulted in advances in veraison (the onset of ripening); and higher-than-average grape yields in 2022 and 2023 vintages. Marine impacts include widespread sea-sponge bleaching around northern and southern NZ.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信