Zero-Flow Dynamics for Headwater Streams in a Humid Forested Landscape

IF 3.2 3区 地球科学 Q1 Environmental Science
Jason A. Leach, Kara L. Webster, Danielle T. Hudson, James Buttle, Magali Nehemy
{"title":"Zero-Flow Dynamics for Headwater Streams in a Humid Forested Landscape","authors":"Jason A. Leach,&nbsp;Kara L. Webster,&nbsp;Danielle T. Hudson,&nbsp;James Buttle,&nbsp;Magali Nehemy","doi":"10.1002/hyp.70025","DOIUrl":null,"url":null,"abstract":"<p>Much of our understanding on temporary headwater streams is from arid and sub-humid environments. We know less about zero-flow periods in humid headwater catchments that experience seasonal snow cover. Our study characterised the temporal and spatial patterns of zero-flow periods for forested headwater streams in a snow-dominated landscape. We used 36 years of streamflow data from 13 headwater catchments within the Turkey Lakes Watershed located on the Canadian Shield in Ontario, Canada, near the eastern shores of Lake Superior. These headwater catchments differ substantially in their number of May–November zero-flow days (0–166 days per year) despite being clustered in a small geographical area with similar geology, physiography and vegetation cover. The catchments also experience similar continental climatic conditions with relatively even precipitation inputs throughout the year (mean annual precipitation of 1210 mm/year). Inter-annual variability in the number of zero-flow days was primarily associated with May–November precipitation and evapotranspiration. Despite the large seasonal snowpacks that form in this region, the amount of snow did not appear to influence the extent of zero-flow periods. We found that between-catchment variability in zero-flow occurrences was related to differences in catchment area and catchment properties typically associated with greater groundwater influence. Our study suggests that occurrences of zero-flows in headwater streams can be highly variable even over small geographical regions and that flow permanence may be more sensitive to spring to fall weather conditions than the influence of snow due partly to the shallow soils typically found on the Canadian Shield.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.70025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70025","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Much of our understanding on temporary headwater streams is from arid and sub-humid environments. We know less about zero-flow periods in humid headwater catchments that experience seasonal snow cover. Our study characterised the temporal and spatial patterns of zero-flow periods for forested headwater streams in a snow-dominated landscape. We used 36 years of streamflow data from 13 headwater catchments within the Turkey Lakes Watershed located on the Canadian Shield in Ontario, Canada, near the eastern shores of Lake Superior. These headwater catchments differ substantially in their number of May–November zero-flow days (0–166 days per year) despite being clustered in a small geographical area with similar geology, physiography and vegetation cover. The catchments also experience similar continental climatic conditions with relatively even precipitation inputs throughout the year (mean annual precipitation of 1210 mm/year). Inter-annual variability in the number of zero-flow days was primarily associated with May–November precipitation and evapotranspiration. Despite the large seasonal snowpacks that form in this region, the amount of snow did not appear to influence the extent of zero-flow periods. We found that between-catchment variability in zero-flow occurrences was related to differences in catchment area and catchment properties typically associated with greater groundwater influence. Our study suggests that occurrences of zero-flows in headwater streams can be highly variable even over small geographical regions and that flow permanence may be more sensitive to spring to fall weather conditions than the influence of snow due partly to the shallow soils typically found on the Canadian Shield.

Abstract Image

潮湿森林景观中源头溪流的零流量动力学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信