Herglotz's representation and Carathéodory's approximation

IF 0.8 3区 数学 Q2 MATHEMATICS
Tirthankar Bhattacharyya, Mainak Bhowmik, Poornendu Kumar
{"title":"Herglotz's representation and Carathéodory's approximation","authors":"Tirthankar Bhattacharyya,&nbsp;Mainak Bhowmik,&nbsp;Poornendu Kumar","doi":"10.1112/blms.13165","DOIUrl":null,"url":null,"abstract":"<p>Herglotz's representation of holomorphic functions with positive real part and Carathéodory's theorem on approximation by inner functions are two well-known classical results in the theory of holomorphic functions on the unit disc. We show that they are equivalent. On a multi-connected domain <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math>, a version of Heglotz's representation is known. Carathéodory's approximation was not known. We formulate and prove it and then show that it is equivalent to the known form of Herglotz's representation. Additionally, it also enables us to prove a new Heglotz's representation in the style of Korányi and Pukánszky. Of particular interest is the fact that the scaling technique of the disc is replaced by Carathéodory's approximation theorem while proving this new form of Herglotz's representation. Carathéodory's approximation theorem is also proved for operator-valued functions on a multi-connected domain.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 12","pages":"3752-3776"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13165","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Herglotz's representation of holomorphic functions with positive real part and Carathéodory's theorem on approximation by inner functions are two well-known classical results in the theory of holomorphic functions on the unit disc. We show that they are equivalent. On a multi-connected domain Ω $\Omega$ , a version of Heglotz's representation is known. Carathéodory's approximation was not known. We formulate and prove it and then show that it is equivalent to the known form of Herglotz's representation. Additionally, it also enables us to prove a new Heglotz's representation in the style of Korányi and Pukánszky. Of particular interest is the fact that the scaling technique of the disc is replaced by Carathéodory's approximation theorem while proving this new form of Herglotz's representation. Carathéodory's approximation theorem is also proved for operator-valued functions on a multi-connected domain.

赫格罗兹的表示和卡拉萨梅多里的近似
Herglotz关于正实部全纯函数的表示和carathsamodory关于内函数逼近的定理是单位圆盘上全纯函数理论中两个著名的经典结果。我们证明它们是等价的。在多连接域Ω $\Omega$上,Heglotz表示的一个版本是已知的。carathimodory的近似值是未知的。我们将它公式化并证明,然后证明它与已知形式的赫格罗兹表示是等价的。此外,它还使我们能够以Korányi和Pukánszky的形式证明新的Heglotz表示。特别有趣的是,在证明这种新形式的赫格罗兹表示时,圆盘的缩放技术被carath奥多里近似定理所取代。对于多连通域上的算子值函数,也证明了carathacimodory近似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信