Curves on Brill–Noether special K3 surfaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Richard Haburcak
{"title":"Curves on Brill–Noether special K3 surfaces","authors":"Richard Haburcak","doi":"10.1002/mana.202300403","DOIUrl":null,"url":null,"abstract":"<p>Mukai showed that projective models of Brill–Noether general polarized K3 surfaces of genus 6–10 and 12 are obtained as linear sections of projective homogeneous varieties, and that their hyperplane sections are Brill–Noether general curves. In general, the question, raised by Knutsen, and attributed to Mukai, of whether the Brill–Noether generality of any polarized K3 surface <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>S</mi>\n <mo>,</mo>\n <mi>H</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(S,H)$</annotation>\n </semantics></math> is equivalent to the Brill–Noether generality of smooth curves <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> in the linear system <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>H</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|H|$</annotation>\n </semantics></math>, is still open. Using Lazarsfeld–Mukai bundle techniques, we answer this question in the affirmative for polarized K3 surfaces of genus <span></span><math>\n <semantics>\n <mrow>\n <mo>≤</mo>\n <mn>19</mn>\n </mrow>\n <annotation>$\\le 19$</annotation>\n </semantics></math>, which provides a new and unified proof even in the genera where Mukai models exist.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4497-4509"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300403","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mukai showed that projective models of Brill–Noether general polarized K3 surfaces of genus 6–10 and 12 are obtained as linear sections of projective homogeneous varieties, and that their hyperplane sections are Brill–Noether general curves. In general, the question, raised by Knutsen, and attributed to Mukai, of whether the Brill–Noether generality of any polarized K3 surface ( S , H ) $(S,H)$ is equivalent to the Brill–Noether generality of smooth curves C $C$ in the linear system | H | $|H|$ , is still open. Using Lazarsfeld–Mukai bundle techniques, we answer this question in the affirmative for polarized K3 surfaces of genus 19 $\le 19$ , which provides a new and unified proof even in the genera where Mukai models exist.

Abstract Image

Brill-Noether特殊K3曲面上的曲线
Mukai证明了6-10和12属Brill-Noether一般极化K3曲面的射影模型是射影齐次变种的线性截面,它们的超平面截面是Brill-Noether一般曲线。一般来说,Knutsen提出的问题,以及Mukai提出的问题,即任何极化K3表面(S)的Brill-Noether一般性,H)$ (S,H)$等价于线性系统|H|$ |H|$中光滑曲线C$的Brill-Noether一般性,仍然是开放的。利用Lazarsfeld-Mukai束技术,对属≤19$ \le 19$的极化K3曲面给出了肯定的答案,给出了在存在Mukai模型的属中新的统一证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信