Exploring Optimal Complexity for Water Stress Representation in Terrestrial Carbon Models: A Hybrid-Machine Learning Model Approach

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
J. Fang, P. Gentine
{"title":"Exploring Optimal Complexity for Water Stress Representation in Terrestrial Carbon Models: A Hybrid-Machine Learning Model Approach","authors":"J. Fang,&nbsp;P. Gentine","doi":"10.1029/2024MS004308","DOIUrl":null,"url":null,"abstract":"<p>Terrestrial biosphere models offer a comprehensive view of the global carbon cycle by integrating ecological processes across scales, yet they introduce significant uncertainties in climate and biogeochemical projections due to diverse process representations and parameter variations. For instance, different soil water limitation functions lead to wide productivity ranges across models. To address this, we propose the Differentiable Land Model (DifferLand), a novel hybrid machine learning approach replacing unknown water limitation functions in models with neural networks (NNs) to learn from data. Using automatic differentiation, we calibrated the embedded NN and the physical model parameters against daily observations of evapotranspiration, gross primary productivity, ecosystem respiration, and leaf area index across 16 FLUXNET sites. We evaluated six model configurations where NNs simulate increasingly complex soil water and photosynthesis interactions against test data sets to find the optimal structure-performance tradeoff. Our findings show that a simple hybrid model with a univariate NN effectively captures site-level water and carbon fluxes on a monthly timescale. Across a global aridity gradient, the magnitude of water stress limitation varies, but its functional form consistently converges to a piecewise linear relationship with saturation at high water levels. While models incorporating more interactions between soil water and meteorological drivers better fit observations at finer time scales, they risk overfitting and equifinality issues. Our study demonstrates that hybrid models have great potential in learning unknown parameterizations and testing ecological hypotheses. Nevertheless, careful structure-performance tradeoffs are warranted in light of observational constraints to translate the retrieved relationships into robust process understanding.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004308","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004308","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Terrestrial biosphere models offer a comprehensive view of the global carbon cycle by integrating ecological processes across scales, yet they introduce significant uncertainties in climate and biogeochemical projections due to diverse process representations and parameter variations. For instance, different soil water limitation functions lead to wide productivity ranges across models. To address this, we propose the Differentiable Land Model (DifferLand), a novel hybrid machine learning approach replacing unknown water limitation functions in models with neural networks (NNs) to learn from data. Using automatic differentiation, we calibrated the embedded NN and the physical model parameters against daily observations of evapotranspiration, gross primary productivity, ecosystem respiration, and leaf area index across 16 FLUXNET sites. We evaluated six model configurations where NNs simulate increasingly complex soil water and photosynthesis interactions against test data sets to find the optimal structure-performance tradeoff. Our findings show that a simple hybrid model with a univariate NN effectively captures site-level water and carbon fluxes on a monthly timescale. Across a global aridity gradient, the magnitude of water stress limitation varies, but its functional form consistently converges to a piecewise linear relationship with saturation at high water levels. While models incorporating more interactions between soil water and meteorological drivers better fit observations at finer time scales, they risk overfitting and equifinality issues. Our study demonstrates that hybrid models have great potential in learning unknown parameterizations and testing ecological hypotheses. Nevertheless, careful structure-performance tradeoffs are warranted in light of observational constraints to translate the retrieved relationships into robust process understanding.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信