Beatriz B. Oliveira, Alexandra R. Fernandes, Pedro Viana Baptista
{"title":"Shrinking Cancer Research Barriers: Crafting Accessible Tumor-on-Chip Device for Gene Silencing Assays","authors":"Beatriz B. Oliveira, Alexandra R. Fernandes, Pedro Viana Baptista","doi":"10.1002/adem.202402254","DOIUrl":null,"url":null,"abstract":"<p>Tumor-on-chip (ToC) is crucial to bridge the gap between traditional cell culture experiments and in vivo models, allowing to recreate an in vivo-like microenvironment in cancer research. ToC use microfluidics to provide fine-tune control over environmental factors, high-throughput screening, and reduce requirements of samples and reagents. However, creating these microfluidic devices requires skilled researchers and dedicated manufacturing equipment, making widespread adoption cumbersome and difficult. To address some bottlenecks and improve accessibility to ToC technology, innovative materials and fabrication processes are required. Polystyrene (PS) is a promising material for microfluidics due to its biocompatibility, affordability, and optical transparency. Herein, a fabrication process based on direct laser writing on thermosensitive PS, allowing the swift and economical crafting of devices with easy pattern alterations, is presented. For the first time, a device for cell culture fabricated only by PS is presented, allowing customizing and optimization for efficient cell culture approaches. These biochips support 2D and 3D cultures with comparable viability and proliferation kinetics to traditional 96-well plates. The data show that gene and protein silencing efficiencies remain consistent across both chip and plate-based cultures, either 2D culture or 3D spheroid format. Although simple, this approach might facilitate the use of customized chip-based cancer models.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202402254","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-on-chip (ToC) is crucial to bridge the gap between traditional cell culture experiments and in vivo models, allowing to recreate an in vivo-like microenvironment in cancer research. ToC use microfluidics to provide fine-tune control over environmental factors, high-throughput screening, and reduce requirements of samples and reagents. However, creating these microfluidic devices requires skilled researchers and dedicated manufacturing equipment, making widespread adoption cumbersome and difficult. To address some bottlenecks and improve accessibility to ToC technology, innovative materials and fabrication processes are required. Polystyrene (PS) is a promising material for microfluidics due to its biocompatibility, affordability, and optical transparency. Herein, a fabrication process based on direct laser writing on thermosensitive PS, allowing the swift and economical crafting of devices with easy pattern alterations, is presented. For the first time, a device for cell culture fabricated only by PS is presented, allowing customizing and optimization for efficient cell culture approaches. These biochips support 2D and 3D cultures with comparable viability and proliferation kinetics to traditional 96-well plates. The data show that gene and protein silencing efficiencies remain consistent across both chip and plate-based cultures, either 2D culture or 3D spheroid format. Although simple, this approach might facilitate the use of customized chip-based cancer models.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.