Organic Matter Composition and Water Stoichiometry Are Main Drivers of Heterotrophic Nitrate Uptake in Mediterranean Headwater Streams

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Xavi Peñarroya, Núria Catalán, Anna Freixa, Anna Lupon, Xavier Triadó-Margarit, Eugènia Martí, Montserrat Soler, Emili O. Casamayor, Susana Bernal
{"title":"Organic Matter Composition and Water Stoichiometry Are Main Drivers of Heterotrophic Nitrate Uptake in Mediterranean Headwater Streams","authors":"Xavi Peñarroya,&nbsp;Núria Catalán,&nbsp;Anna Freixa,&nbsp;Anna Lupon,&nbsp;Xavier Triadó-Margarit,&nbsp;Eugènia Martí,&nbsp;Montserrat Soler,&nbsp;Emili O. Casamayor,&nbsp;Susana Bernal","doi":"10.1029/2024JG008346","DOIUrl":null,"url":null,"abstract":"<p>Heterotrophic bacteria can contribute to improve stream water quality by taking up nitrate (NO<sub>3</sub><sup>−</sup>) from the water column, although microbial demand for this nutrient is usually lower than for other inorganic nitrogen (N) forms, such as ammonium. Heterotrophic NO<sub>3</sub><sup>−</sup> uptake has been related to the availability of dissolved organic carbon (DOC) relative to nutrients (i.e., DOC: nutrients ratios). Yet, how dissolved organic matter (DOM) composition and specific microbial assemblages influence NO<sub>3</sub><sup>−</sup> uptake remains poorly understood. We conducted laboratory incubations to investigate heterotrophic NO<sub>3</sub><sup>−</sup> uptake kinetics in 9 Mediterranean freshwater ecosystems, primarily headwater streams, exhibiting wide variation in DOC:NO<sub>3</sub> ratios (from 1.5 to 750). Moreover, we characterized DOM composition using spectroscopic indexes and its degradation via a reactivity continuum model approach. Microbial community composition and functioning were assessed by analyzing extracellular enzymatic activities and the potential abundance of N-cycling genes. Our results revealed that NO<sub>3</sub><sup>−</sup> uptake rates (<i>k</i><sub>NO3</sub>) were positively related with DOC:NO<sub>3</sub> ratios (<i>r</i><sup><i>2</i></sup> = 0.4) and to NO<sub>3</sub>:SRP ratios as well (<i>r</i><sup>2</sup> = 0.6). Furthermore, <i>k</i><sub>NO3</sub> was negatively correlated to the humification index (<i>r</i><sup><i>2</i></sup> = 0.7), suggesting that a higher proportion of humic-like compounds slow down heterotrophic NO<sub>3</sub><sup>−</sup> uptake. A partial least squares regression model (PLS) pinpointed that DOC and nutrient stoichiometry, DOM composition and reactivity, and microbial composition and activity collectively contributed to explain the variability in <i>k</i><sub>NO3</sub> observed across treatments. Our findings suggest that heterotrophic NO<sub>3</sub><sup>−</sup> uptake may show significant responsiveness to shifts toward more labile DOM sources and nutrient imbalances induced by global change.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008346","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008346","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heterotrophic bacteria can contribute to improve stream water quality by taking up nitrate (NO3) from the water column, although microbial demand for this nutrient is usually lower than for other inorganic nitrogen (N) forms, such as ammonium. Heterotrophic NO3 uptake has been related to the availability of dissolved organic carbon (DOC) relative to nutrients (i.e., DOC: nutrients ratios). Yet, how dissolved organic matter (DOM) composition and specific microbial assemblages influence NO3 uptake remains poorly understood. We conducted laboratory incubations to investigate heterotrophic NO3 uptake kinetics in 9 Mediterranean freshwater ecosystems, primarily headwater streams, exhibiting wide variation in DOC:NO3 ratios (from 1.5 to 750). Moreover, we characterized DOM composition using spectroscopic indexes and its degradation via a reactivity continuum model approach. Microbial community composition and functioning were assessed by analyzing extracellular enzymatic activities and the potential abundance of N-cycling genes. Our results revealed that NO3 uptake rates (kNO3) were positively related with DOC:NO3 ratios (r2 = 0.4) and to NO3:SRP ratios as well (r2 = 0.6). Furthermore, kNO3 was negatively correlated to the humification index (r2 = 0.7), suggesting that a higher proportion of humic-like compounds slow down heterotrophic NO3 uptake. A partial least squares regression model (PLS) pinpointed that DOC and nutrient stoichiometry, DOM composition and reactivity, and microbial composition and activity collectively contributed to explain the variability in kNO3 observed across treatments. Our findings suggest that heterotrophic NO3 uptake may show significant responsiveness to shifts toward more labile DOM sources and nutrient imbalances induced by global change.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信