Photochemical and Microbial Degradation of Deadwood Leachate

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Norbert Kamjunke, Peter Herzsprung, Wolf von Tümpling, Oliver J. Lechtenfeld
{"title":"Photochemical and Microbial Degradation of Deadwood Leachate","authors":"Norbert Kamjunke,&nbsp;Peter Herzsprung,&nbsp;Wolf von Tümpling,&nbsp;Oliver J. Lechtenfeld","doi":"10.1029/2024JG008184","DOIUrl":null,"url":null,"abstract":"<p>During the last decades, intensive forest dieback due to drought events and bark beetle infestation was globally observed leading to accumulation of deadwood. However, data on molecular composition of deadwood DOM, of its bacterial and photo-transformation, and of the interaction of these processes are scarce. Here, we investigate the fate of DOM leached from deadwood into streams. We hypothesized that (a) bacterial degradation dominates quantitatively over photodegradation in stream water, (b) bacterial degradation is further promoted by labile and easily degradable photoproducts, and (c) DOM compositional changes reflect both the bacterial and light transformation. A leachate of spruce branches and bark in pure water was used for a degradation experiment in a 2 × 2 factorial design without and with stream bacteria and light, respectively. Dissolved organic carbon concentration did not change in dark incubation without bacteria but decreased slightly (3%) in the light. The decrease with bacteria in the dark was stronger (9%), that is, photodegradation of spruce leachate was less important than bacterial degradation (a). Photodegradation and bacterial degradation added in the light plus bacteria treatment (12%), and bacterial degradation was similar in light and dark, indicating no quantitative priming by easily available photoproducts but some qualitative modifications were detected (b). Light induced the production of mostly small and polar molecules, mainly from stream water DOM, while bacteria preferentially degraded nonpolar molecules from dead-wood leachate (c). Our results indicate distinct transformation pathways and high microbial availability for deadwood-derived DOM as compared to stream water DOM that may stimulate heterotrophic processes in headwater streams.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008184","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008184","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During the last decades, intensive forest dieback due to drought events and bark beetle infestation was globally observed leading to accumulation of deadwood. However, data on molecular composition of deadwood DOM, of its bacterial and photo-transformation, and of the interaction of these processes are scarce. Here, we investigate the fate of DOM leached from deadwood into streams. We hypothesized that (a) bacterial degradation dominates quantitatively over photodegradation in stream water, (b) bacterial degradation is further promoted by labile and easily degradable photoproducts, and (c) DOM compositional changes reflect both the bacterial and light transformation. A leachate of spruce branches and bark in pure water was used for a degradation experiment in a 2 × 2 factorial design without and with stream bacteria and light, respectively. Dissolved organic carbon concentration did not change in dark incubation without bacteria but decreased slightly (3%) in the light. The decrease with bacteria in the dark was stronger (9%), that is, photodegradation of spruce leachate was less important than bacterial degradation (a). Photodegradation and bacterial degradation added in the light plus bacteria treatment (12%), and bacterial degradation was similar in light and dark, indicating no quantitative priming by easily available photoproducts but some qualitative modifications were detected (b). Light induced the production of mostly small and polar molecules, mainly from stream water DOM, while bacteria preferentially degraded nonpolar molecules from dead-wood leachate (c). Our results indicate distinct transformation pathways and high microbial availability for deadwood-derived DOM as compared to stream water DOM that may stimulate heterotrophic processes in headwater streams.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信