Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Pin-Chun Huang
{"title":"Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction","authors":"Pin-Chun Huang","doi":"10.1111/jfr3.13050","DOIUrl":null,"url":null,"abstract":"<p>TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (<i>R</i><sup><i>2</i></sup>) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13050","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (R2) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信