Xunting Wang, Bin Xu, Jinjin Ding, Chengcheng Ren, Qian Zhang
{"title":"Finite-time \n \n \n H\n ∞\n \n ${{H}_\\infty }$\n fault detection for large-scale power system via Markov jumping mechanism","authors":"Xunting Wang, Bin Xu, Jinjin Ding, Chengcheng Ren, Qian Zhang","doi":"10.1049/cth2.12732","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the finite-time <span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mi>∞</mi>\n </msub>\n <annotation>${{H}_\\infty }$</annotation>\n </semantics></math> fault detection problem for large-scale power systems via the Markov jumping mechanism subject to unknown disturbances. The novel power system is described by a large-scale system model, and the residual dynamic properties of unknown input signals and fault signals, including unknown disturbances and modelling errors, are obtained by reconstructing the system. Then, the energy norm indicators of the residual disturbance signal and fault signal are, respectively, selected to reflect their suppression effect on disturbance and sensitivity to faults. Moreover, the design of a fault detection observer is formulated as an optimisation problem. Based on Lyapunov theory and linear matrix inequalities (LMI), sufficient conditions for the designed fault detection observer solutions are given, and an optimisation design method is provided. Finally, the simulation results show that the optimised observer can detect the fault signal effectively and can contain the effect of unknown disturbances on the residuals within a given range when a fault occurs.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 18","pages":"2886-2898"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12732","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12732","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the finite-time fault detection problem for large-scale power systems via the Markov jumping mechanism subject to unknown disturbances. The novel power system is described by a large-scale system model, and the residual dynamic properties of unknown input signals and fault signals, including unknown disturbances and modelling errors, are obtained by reconstructing the system. Then, the energy norm indicators of the residual disturbance signal and fault signal are, respectively, selected to reflect their suppression effect on disturbance and sensitivity to faults. Moreover, the design of a fault detection observer is formulated as an optimisation problem. Based on Lyapunov theory and linear matrix inequalities (LMI), sufficient conditions for the designed fault detection observer solutions are given, and an optimisation design method is provided. Finally, the simulation results show that the optimised observer can detect the fault signal effectively and can contain the effect of unknown disturbances on the residuals within a given range when a fault occurs.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.