Observation and Simulation of Runoff During an Extreme Heatwave in a Glacial Basin on the Central Tibetan Plateau

IF 3.2 3区 地球科学 Q1 Environmental Science
Fei Zhu, Meilin Zhu, Yanhong Guo, Tandong Yao
{"title":"Observation and Simulation of Runoff During an Extreme Heatwave in a Glacial Basin on the Central Tibetan Plateau","authors":"Fei Zhu,&nbsp;Meilin Zhu,&nbsp;Yanhong Guo,&nbsp;Tandong Yao","doi":"10.1002/hyp.70014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glacier meltwater runoff during extreme heat waves is crucial for overall runoff replenishment; however, studies on the characteristics and mechanisms of extreme meltwater runoff on the Tibetan Plateau (TP) are relatively scarce. In this study, we combine field observations (hydrological, meteorological, and glaciological) with a precipitation runoff modelling system and glacier model (PRMSglacier) to investigate the characteristics of extreme glacier meltwater runoff and the associated energy balance and hydrological processes from October 2018 to September 2022 in the Sangqu Basin on the central TP. Good agreement was shown between observed and modelled total runoff and glacier-wide mass balance, with a mean Nash–Sutcliffe efficiency (NSE) of 0.74 and root-mean-square error (RMSE) of 22 mm w.e. The mean glacial meltwater runoff contributed 14% of the total runoff and snowmelt runoff 72.5% during the study period. Contributions of 21.3% and 59% for glacier meltwater and snowmelt runoff, respectively, during a heatwave from June to September 2022 thus indicated anomalously high glacial meltwater and snowmelt runoff in association with hot and dry meteorological conditions. Basin-scale energy balance results suggest that extremely low albedo and extremely high surface temperatures control the net shortwave and longwave radiation, leading to anomalously high melting of glaciers and snow. The hot and dry meteorological conditions from June to September 2022 primarily affected the source regions of the Yangtze River and Selincuo in Geladandong. This study highlights the importance of extreme glacial meltwater runoff to terrestrial water resources in association with frequent extreme heat waves.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 12","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.70014","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Glacier meltwater runoff during extreme heat waves is crucial for overall runoff replenishment; however, studies on the characteristics and mechanisms of extreme meltwater runoff on the Tibetan Plateau (TP) are relatively scarce. In this study, we combine field observations (hydrological, meteorological, and glaciological) with a precipitation runoff modelling system and glacier model (PRMSglacier) to investigate the characteristics of extreme glacier meltwater runoff and the associated energy balance and hydrological processes from October 2018 to September 2022 in the Sangqu Basin on the central TP. Good agreement was shown between observed and modelled total runoff and glacier-wide mass balance, with a mean Nash–Sutcliffe efficiency (NSE) of 0.74 and root-mean-square error (RMSE) of 22 mm w.e. The mean glacial meltwater runoff contributed 14% of the total runoff and snowmelt runoff 72.5% during the study period. Contributions of 21.3% and 59% for glacier meltwater and snowmelt runoff, respectively, during a heatwave from June to September 2022 thus indicated anomalously high glacial meltwater and snowmelt runoff in association with hot and dry meteorological conditions. Basin-scale energy balance results suggest that extremely low albedo and extremely high surface temperatures control the net shortwave and longwave radiation, leading to anomalously high melting of glaciers and snow. The hot and dry meteorological conditions from June to September 2022 primarily affected the source regions of the Yangtze River and Selincuo in Geladandong. This study highlights the importance of extreme glacial meltwater runoff to terrestrial water resources in association with frequent extreme heat waves.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信