Long-Term Foehn Reconstruction Combining Unsupervised and Supervised Learning

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Reto Stauffer, Achim Zeileis, Georg J. Mayr
{"title":"Long-Term Foehn Reconstruction Combining Unsupervised and Supervised Learning","authors":"Reto Stauffer,&nbsp;Achim Zeileis,&nbsp;Georg J. Mayr","doi":"10.1002/joc.8673","DOIUrl":null,"url":null,"abstract":"<p>Foehn winds, characterised by abrupt temperature increases and wind speed changes, significantly impact regions on the leeward side of mountain ranges, e.g., by spreading wildfires. Understanding how foehn occurrences change under climate change is crucial. As foehn is a meteorological phenomenon, its prevalence has to be inferred from meteorological measurements employing suitable classification schemes. Hence, this approach is typically limited to specific periods for which the necessary data are available. We present a novel approach for reconstructing historical foehn occurrences using a combination of unsupervised and supervised probabilistic statistical learning methods. We utilise in situ measurements (available for recent decades) to train an unsupervised learner (finite mixture model) for automatic foehn classification. These labelled data are then linked to reanalysis data (covering longer periods) using a supervised learner (lasso or boosting). This allows us to reconstruct past foehn probabilities based solely on reanalysis data. Applying this method to ERA5 reanalysis data for six stations across Switzerland and Austria achieves accurate hourly reconstructions of north and south foehn occurrence, respectively, dating back to 1940. This paves the way for investigating how seasonal foehn patterns have evolved over the past 83 years, providing valuable insights into climate change impacts on these critical wind events.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 16","pages":"5890-5901"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8673","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8673","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Foehn winds, characterised by abrupt temperature increases and wind speed changes, significantly impact regions on the leeward side of mountain ranges, e.g., by spreading wildfires. Understanding how foehn occurrences change under climate change is crucial. As foehn is a meteorological phenomenon, its prevalence has to be inferred from meteorological measurements employing suitable classification schemes. Hence, this approach is typically limited to specific periods for which the necessary data are available. We present a novel approach for reconstructing historical foehn occurrences using a combination of unsupervised and supervised probabilistic statistical learning methods. We utilise in situ measurements (available for recent decades) to train an unsupervised learner (finite mixture model) for automatic foehn classification. These labelled data are then linked to reanalysis data (covering longer periods) using a supervised learner (lasso or boosting). This allows us to reconstruct past foehn probabilities based solely on reanalysis data. Applying this method to ERA5 reanalysis data for six stations across Switzerland and Austria achieves accurate hourly reconstructions of north and south foehn occurrence, respectively, dating back to 1940. This paves the way for investigating how seasonal foehn patterns have evolved over the past 83 years, providing valuable insights into climate change impacts on these critical wind events.

Abstract Image

结合无监督和监督学习的长期焚风重建
以温度突然升高和风速变化为特征的焚风对山脉背风侧的地区产生了重大影响,例如通过蔓延野火。了解在气候变化的影响下,风的发生是如何变化的至关重要。由于焚风是一种气象现象,其流行程度必须通过采用适当分类方案的气象测量来推断。因此,这种方法通常仅限于有必要数据可用的特定时期。我们提出了一种利用无监督和有监督概率统计学习方法相结合来重建历史焚风事件的新方法。我们利用现场测量(近几十年可用)来训练无监督学习器(有限混合模型)用于自动fenhn分类。然后使用监督学习器(套索或增强)将这些标记数据与再分析数据(覆盖更长时间)联系起来。这使我们能够仅根据再分析数据重建过去的焚风概率。将该方法应用于瑞士和奥地利6个站点的ERA5再分析数据,分别获得了自1940年以来北风和南风发生的精确逐时重建。这为研究过去83年来季节性风模式的演变铺平了道路,为气候变化对这些关键风事件的影响提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信