Anthropogenic Perturbations Complicated the Downstream Greenhouse Gas Dynamics of a Large Subtropical Reservoir

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Xiang Wan, Shuai Chen, Wanfa Wang, Mutan Dai, Wenhong Shi, Lishan Ran, Xiaoxu Wu, Wenfeng Tan
{"title":"Anthropogenic Perturbations Complicated the Downstream Greenhouse Gas Dynamics of a Large Subtropical Reservoir","authors":"Xiang Wan,&nbsp;Shuai Chen,&nbsp;Wanfa Wang,&nbsp;Mutan Dai,&nbsp;Wenhong Shi,&nbsp;Lishan Ran,&nbsp;Xiaoxu Wu,&nbsp;Wenfeng Tan","doi":"10.1029/2024JG008408","DOIUrl":null,"url":null,"abstract":"<p>River damming can significantly alter the hydrology and nutrient levels of river water, resulting in substantial greenhouse gas (GHG) emissions to the atmosphere. However, the dynamics of greenhouse gases in the discharged water downstream of dams remain poorly understood, despite being recognized as a crucial source of GHG emissions in river-reservoir systems. In this study, we conducted comprehensive measurements of GHG concentrations and water chemistry in a large subtropical reservoir and its upstream and downstream rivers to investigate the spatiotemporal patterns of GHG concentrations and fluxes and to identify their governing mechanisms, with a primary focus on downstream GHG dynamics. Our analysis revealed that the distribution of <i>p</i>CO<sub>2</sub> among the reservoir and its upstream and downstream rivers was predominantly controlled by aquatic metabolism and atmospheric CO<sub>2</sub> exchange. Conversely, the distribution of CH<sub>4</sub> and N<sub>2</sub>O levels was largely influenced by anaerobic metabolism. Seasonal fluctuations in GHG dynamics were linked to hydroclimatic conditions, including water temperature, hydrologic connectivity between land and rivers, and reservoir thermal stratification. Anthropogenic activities (e.g., agricultural land use) were found to affect the downstream trend of GHG concentrations. Higher GHG fluxes in the downstream rivers compared to reservoir were attributed to the anaerobic production of CH<sub>4</sub> in the reservoir and increased gas transfer velocity in the downstream rivers. These findings underscore the critical influence of anthropogenic activities on downstream GHG dynamics and emphasize the necessity of integrating anthropogenic impacts and seasonal variability in downstream GHG emissions to enhance our understanding of the carbon budget in river-reservoir systems.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008408","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

River damming can significantly alter the hydrology and nutrient levels of river water, resulting in substantial greenhouse gas (GHG) emissions to the atmosphere. However, the dynamics of greenhouse gases in the discharged water downstream of dams remain poorly understood, despite being recognized as a crucial source of GHG emissions in river-reservoir systems. In this study, we conducted comprehensive measurements of GHG concentrations and water chemistry in a large subtropical reservoir and its upstream and downstream rivers to investigate the spatiotemporal patterns of GHG concentrations and fluxes and to identify their governing mechanisms, with a primary focus on downstream GHG dynamics. Our analysis revealed that the distribution of pCO2 among the reservoir and its upstream and downstream rivers was predominantly controlled by aquatic metabolism and atmospheric CO2 exchange. Conversely, the distribution of CH4 and N2O levels was largely influenced by anaerobic metabolism. Seasonal fluctuations in GHG dynamics were linked to hydroclimatic conditions, including water temperature, hydrologic connectivity between land and rivers, and reservoir thermal stratification. Anthropogenic activities (e.g., agricultural land use) were found to affect the downstream trend of GHG concentrations. Higher GHG fluxes in the downstream rivers compared to reservoir were attributed to the anaerobic production of CH4 in the reservoir and increased gas transfer velocity in the downstream rivers. These findings underscore the critical influence of anthropogenic activities on downstream GHG dynamics and emphasize the necessity of integrating anthropogenic impacts and seasonal variability in downstream GHG emissions to enhance our understanding of the carbon budget in river-reservoir systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信