Systematic Regional Aerosol Perturbations (SyRAP) in Asia Using the Intermediate-Resolution Global Climate Model FORTE2

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Camilla W. Stjern, Manoj Joshi, Laura J. Wilcox, Amee Gollop, Bjørn H. Samset
{"title":"Systematic Regional Aerosol Perturbations (SyRAP) in Asia Using the Intermediate-Resolution Global Climate Model FORTE2","authors":"Camilla W. Stjern,&nbsp;Manoj Joshi,&nbsp;Laura J. Wilcox,&nbsp;Amee Gollop,&nbsp;Bjørn H. Samset","doi":"10.1029/2023MS004171","DOIUrl":null,"url":null,"abstract":"<p>Emissions of anthropogenic aerosols are rapidly changing, in amounts, composition and geographical distribution. In East and South Asia in particular, strong aerosol trends combined with high population densities imply high potential vulnerability to climate change. Improved knowledge of how near-term climate and weather influences these changes is urgently needed, to allow for better-informed adaptation strategies. To understand and decompose the local and remote climate impacts of regional aerosol emission changes, we perform a set of Systematic Regional Aerosol Perturbations (SyRAP) using the reduced-complexity climate model FORTE 2.0 (FORTE2). Absorbing and scattering aerosols are perturbed separately, over East Asia and South Asia, to assess their distinct influences on climate. In this paper, we first present an updated version of FORTE2, which includes treatment of aerosol-cloud interactions. We then document and validate the local responses over a range of parameters, showing for instance that removing emissions of absorbing aerosols over both East Asia and South Asia is projected to cause a local drying, alongside a range of more widespread effects. We find that SyRAP-FORTE2 is able to reproduce the responses to Asian aerosol changes documented in the literature, and that it can help us decompose regional climate impacts of aerosols from the two regions. Finally, we show how SyRAP-FORTE2 has regionally linear responses in temperature and precipitation and can be used as input to emulators and tunable simple climate models, and as a ready-made tool for projecting the local and remote effects of near-term changes in Asian aerosol emissions.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004171","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004171","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Emissions of anthropogenic aerosols are rapidly changing, in amounts, composition and geographical distribution. In East and South Asia in particular, strong aerosol trends combined with high population densities imply high potential vulnerability to climate change. Improved knowledge of how near-term climate and weather influences these changes is urgently needed, to allow for better-informed adaptation strategies. To understand and decompose the local and remote climate impacts of regional aerosol emission changes, we perform a set of Systematic Regional Aerosol Perturbations (SyRAP) using the reduced-complexity climate model FORTE 2.0 (FORTE2). Absorbing and scattering aerosols are perturbed separately, over East Asia and South Asia, to assess their distinct influences on climate. In this paper, we first present an updated version of FORTE2, which includes treatment of aerosol-cloud interactions. We then document and validate the local responses over a range of parameters, showing for instance that removing emissions of absorbing aerosols over both East Asia and South Asia is projected to cause a local drying, alongside a range of more widespread effects. We find that SyRAP-FORTE2 is able to reproduce the responses to Asian aerosol changes documented in the literature, and that it can help us decompose regional climate impacts of aerosols from the two regions. Finally, we show how SyRAP-FORTE2 has regionally linear responses in temperature and precipitation and can be used as input to emulators and tunable simple climate models, and as a ready-made tool for projecting the local and remote effects of near-term changes in Asian aerosol emissions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信