Optimization of emergency material distribution routes in flood disaster with truck-speedboat-drone coordination

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Ying Gong, Weili Wang, Yufeng Zhou, Jiahao Cheng
{"title":"Optimization of emergency material distribution routes in flood disaster with truck-speedboat-drone coordination","authors":"Ying Gong,&nbsp;Weili Wang,&nbsp;Yufeng Zhou,&nbsp;Jiahao Cheng","doi":"10.1111/jfr3.13045","DOIUrl":null,"url":null,"abstract":"<p>To improve the effectiveness of flood disaster relief operations, by ensuring timely and accurate delivery of urgently needed supplies to affected areas, this study focuses on the problem of emergency material distribution during floods. With the objective of minimizing the overall delivery time of emergency materials, we propose a coordinated optimization model that integrates trucks, speedboats, and drones for effective distribution of emergency supplies in flood-affected areas. To solve this optimization problem, we introduce an improved adaptive large neighborhood search (IALNS) algorithm, which builds on the traditional ALNS framework through refined tuning of deletion and insertion operators. Comparative analyses are conducted with a genetic algorithm, simulated annealing algorithm, and tabu search algorithm. The results reveal that the average performance gap of IALNS compared to these methods is 91.13%, 152.72%, and 16.92%, respectively. The experimental results demonstrate that the efficiency of the proposed model and algorithm in addressing the emergency supply distribution problem during flood disasters, highlighting the superior performance of IALNS. This research contributes to enhancing disaster response strategies, ultimately leading to improved outcomes for flood-affected communities.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13045","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the effectiveness of flood disaster relief operations, by ensuring timely and accurate delivery of urgently needed supplies to affected areas, this study focuses on the problem of emergency material distribution during floods. With the objective of minimizing the overall delivery time of emergency materials, we propose a coordinated optimization model that integrates trucks, speedboats, and drones for effective distribution of emergency supplies in flood-affected areas. To solve this optimization problem, we introduce an improved adaptive large neighborhood search (IALNS) algorithm, which builds on the traditional ALNS framework through refined tuning of deletion and insertion operators. Comparative analyses are conducted with a genetic algorithm, simulated annealing algorithm, and tabu search algorithm. The results reveal that the average performance gap of IALNS compared to these methods is 91.13%, 152.72%, and 16.92%, respectively. The experimental results demonstrate that the efficiency of the proposed model and algorithm in addressing the emergency supply distribution problem during flood disasters, highlighting the superior performance of IALNS. This research contributes to enhancing disaster response strategies, ultimately leading to improved outcomes for flood-affected communities.

Abstract Image

卡车-快艇-无人机协同的洪涝灾害应急物资配送路线优化
为了提高洪水救灾行动的有效性,确保将急需物资及时准确地运送到受灾地区,本研究重点研究洪水期间的应急物资分配问题。以最大限度地缩短应急物资的整体配送时间为目标,提出了一种卡车、快艇、无人机协同优化的应急物资有效配送模型。为了解决这一优化问题,我们引入了一种改进的自适应大邻域搜索(IALNS)算法,该算法建立在传统的大邻域搜索框架的基础上,通过对删除和插入操作符进行微调。并与遗传算法、模拟退火算法和禁忌搜索算法进行了比较分析。结果表明,IALNS与上述方法的平均性能差距分别为91.13%、152.72%和16.92%。实验结果表明,所提出的模型和算法在解决洪水灾害时应急供电分配问题上是有效的,突出了IALNS的优越性能。这项研究有助于加强灾害应对战略,最终为受洪水影响的社区带来更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信