{"title":"GGR Handbook of Rock and Mineral Analysis Chapter 1 (Part 2) Sampling as Part of the Measurement Process","authors":"Michael H. Ramsey","doi":"10.1111/ggr.12586","DOIUrl":null,"url":null,"abstract":"<p>This chapter (Sampling as Part of the Measurement Process) is a contribution to the <i>Geostandards and Geoanalytical Research Handbook of Rock and Mineral Analysis</i> – an online textbook that is a fully revised and updated edition of <i>A</i> <i>Handbook of Silicate Rock Analysis</i> (P. J. Potts, 1987, Blackie, Glasgow).</p><p>Chapter 1 (Part 2) forms part of Section 1 of the handbook dealing with fundamentals of measurement and instrument design. The geochemical measurement process is considered to begin when the primary sample is taken from the sampling target, rather than when that sample arrives at the laboratory. This integration of sampling within the measurement procedure enables both sampling and chemical analysis to be optimised in order to achieve a measurement procedure that is fit for its intended geochemical purpose. The key metric in judging this fitness for purpose, and hence validating a measurement procedure, is the uncertainty of each measurement value. This measurement uncertainty is explained, together with methods to estimate and express it in a way that includes the contribution from sampling, with a worked example. The resultant more realistic estimates of measurement uncertainty are shown to improve the reliability of the geochemical interpretation of measurement values.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 4","pages":"719-736"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12586","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12586","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter (Sampling as Part of the Measurement Process) is a contribution to the Geostandards and Geoanalytical Research Handbook of Rock and Mineral Analysis – an online textbook that is a fully revised and updated edition of AHandbook of Silicate Rock Analysis (P. J. Potts, 1987, Blackie, Glasgow).
Chapter 1 (Part 2) forms part of Section 1 of the handbook dealing with fundamentals of measurement and instrument design. The geochemical measurement process is considered to begin when the primary sample is taken from the sampling target, rather than when that sample arrives at the laboratory. This integration of sampling within the measurement procedure enables both sampling and chemical analysis to be optimised in order to achieve a measurement procedure that is fit for its intended geochemical purpose. The key metric in judging this fitness for purpose, and hence validating a measurement procedure, is the uncertainty of each measurement value. This measurement uncertainty is explained, together with methods to estimate and express it in a way that includes the contribution from sampling, with a worked example. The resultant more realistic estimates of measurement uncertainty are shown to improve the reliability of the geochemical interpretation of measurement values.
本章(采样作为测量过程的一部分)是对岩石和矿物分析的地质标准和地质分析研究手册的贡献-这是一本在线教科书,是硅酸盐岩石分析手册(P. J. Potts, 1987, Blackie,格拉斯哥)的全面修订和更新版。第1章(第2部分)是手册第1节的一部分,涉及测量和仪器设计的基础知识。地球化学测量过程被认为是在从采样目标处采集主要样品时开始,而不是在样品到达实验室时开始。测量过程中采样的整合使采样和化学分析都得到优化,以实现适合其预期的地球化学目的的测量过程。判断这个目的是否合适的关键指标,并因此验证一个测量过程,是每个测量值的不确定度。该测量不确定度的解释,连同方法来估计和表达它的方式,包括从抽样的贡献,一个工作实例。由此得出的测量不确定度估计更符合实际,提高了测量值地球化学解释的可靠性。
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.