Cellulose-based encapsulation for all-printed flexible thermoelectric touch detectors

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Joana Figueira, Mariana Peixoto, Cristina Gaspar, Joana Loureiro, Rodrigo Martins, Emanuel Carlos, Luís Pereira
{"title":"Cellulose-based encapsulation for all-printed flexible thermoelectric touch detectors","authors":"Joana Figueira,&nbsp;Mariana Peixoto,&nbsp;Cristina Gaspar,&nbsp;Joana Loureiro,&nbsp;Rodrigo Martins,&nbsp;Emanuel Carlos,&nbsp;Luís Pereira","doi":"10.1007/s10854-024-14064-4","DOIUrl":null,"url":null,"abstract":"<div><p>Printed and flexible electronics have gained considerable scientific attention in recent years, driving the demand for low-energy production techniques, eco-friendly materials and flexible substrates. However, effective encapsulation is essential to protect these devices in harsh environmental conditions. Thus, sustainable encapsulant materials are critical for advancing flexible electronics. In this work, we studied three encapsulant materials—commercial plastic, polyvinyl alcohol and ethyl cellulose—applied to thermoelectric touch sensors printed on paper and fabric substrates. Ethyl cellulose demonstrated promising properties in terms of flexibility, water resistance and transparency, along with a low carbon footprint. Encapsulated substrates with ethyl cellulose exhibited high contact angles (121° on fabric and 116° on paper), indicating robust water repellency. Thermal stability tests showed minimal mass loss (10%) at 315 °C, confirming its temperature resilience. Furthermore, sensors encapsulated with ethyl cellulose retained their electric performance after water submersion for 1 min and withstood 100 bending cycles, maintaining response times below 1 s and signal output around 100 µV. These findings highlight ethyl cellulose as a viable green encapsulant material compatible with large-scale sustainable electronics manufacturing.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-14064-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-14064-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Printed and flexible electronics have gained considerable scientific attention in recent years, driving the demand for low-energy production techniques, eco-friendly materials and flexible substrates. However, effective encapsulation is essential to protect these devices in harsh environmental conditions. Thus, sustainable encapsulant materials are critical for advancing flexible electronics. In this work, we studied three encapsulant materials—commercial plastic, polyvinyl alcohol and ethyl cellulose—applied to thermoelectric touch sensors printed on paper and fabric substrates. Ethyl cellulose demonstrated promising properties in terms of flexibility, water resistance and transparency, along with a low carbon footprint. Encapsulated substrates with ethyl cellulose exhibited high contact angles (121° on fabric and 116° on paper), indicating robust water repellency. Thermal stability tests showed minimal mass loss (10%) at 315 °C, confirming its temperature resilience. Furthermore, sensors encapsulated with ethyl cellulose retained their electric performance after water submersion for 1 min and withstood 100 bending cycles, maintaining response times below 1 s and signal output around 100 µV. These findings highlight ethyl cellulose as a viable green encapsulant material compatible with large-scale sustainable electronics manufacturing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信