{"title":"Fabrication of metal-doped graphite phase carbon nitride-based membrane and its application","authors":"Wenbiao Zheng, Chengning Ye, Mingfeng Yu, Shujuan Yang, Yonghe Xiu, Xiaoxiao He, Hanyu Xue, Jianrong Xia, Renjin Gao, Zhanhui Yuan, Liwei Wang","doi":"10.1007/s42114-024-01175-z","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-doped (Cu, Zn, Mn) g-C<sub>3</sub>N<sub>4</sub> was synthesized by a simple high-temperature process, followed by the insertion of one-dimensional nanofibrillar cellulose (CNF) into the two-dimensional g-C<sub>3</sub>N<sub>4.</sub> Photocatalytic composite membranes were then prepared using a vacuum-assisted filtration method. A series of characterization techniques, including XRD, SEM, FT-IR, and UV–vis DRS, were employed to systematically analyze the microstructure, chemical composition, and physicochemical properties of the designed g-C<sub>3</sub>N<sub>4</sub>/CNF composite membranes. The results indicated that the visible photocatalytic activity of the metal-doped photocatalysts was enhanced, which is beneficial for pollutant degradation by reducing the bandgap and extending the absorption of visible light. Notably, the composite membrane prepared with Mn-doped g-C<sub>3</sub>N<sub>4</sub> demonstrated the highest photocatalytic performance in degrading rhodamine B dye, achieving a 42.6% degradation rate within 7 h. Additionally, the water flux and retention rate of the composite membranes were improved after metal doping, with Zn-doped g-C<sub>3</sub>N<sub>4</sub> showing approximately six times the water flux of undoped g-C<sub>3</sub>N<sub>4</sub>, reaching a rate of 293.64 L·m<sup>−2</sup>·h<sup>−1</sup>·bar<sup>−1</sup>.</p><h3>Graphic abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01175-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-doped (Cu, Zn, Mn) g-C3N4 was synthesized by a simple high-temperature process, followed by the insertion of one-dimensional nanofibrillar cellulose (CNF) into the two-dimensional g-C3N4. Photocatalytic composite membranes were then prepared using a vacuum-assisted filtration method. A series of characterization techniques, including XRD, SEM, FT-IR, and UV–vis DRS, were employed to systematically analyze the microstructure, chemical composition, and physicochemical properties of the designed g-C3N4/CNF composite membranes. The results indicated that the visible photocatalytic activity of the metal-doped photocatalysts was enhanced, which is beneficial for pollutant degradation by reducing the bandgap and extending the absorption of visible light. Notably, the composite membrane prepared with Mn-doped g-C3N4 demonstrated the highest photocatalytic performance in degrading rhodamine B dye, achieving a 42.6% degradation rate within 7 h. Additionally, the water flux and retention rate of the composite membranes were improved after metal doping, with Zn-doped g-C3N4 showing approximately six times the water flux of undoped g-C3N4, reaching a rate of 293.64 L·m−2·h−1·bar−1.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.