Dynamics of Sorption Processes at Physical Synthesis of Iron Nanoparticles

IF 2.7 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Yurii A. Kurapov, Stanislav Ye. Lytvyn, Gennadii G. Didikin, Olena I. Oranska, Sergei M. Romanenko
{"title":"Dynamics of Sorption Processes at Physical Synthesis of Iron Nanoparticles","authors":"Yurii A. Kurapov,&nbsp;Stanislav Ye. Lytvyn,&nbsp;Gennadii G. Didikin,&nbsp;Olena I. Oranska,&nbsp;Sergei M. Romanenko","doi":"10.1007/s10876-024-02743-5","DOIUrl":null,"url":null,"abstract":"<div><p>Scanning and transmission electron microscopy, powder X-ray diffraction and thermogravimetric analyses were used to study the dynamics of the sorption processes of ligand-free iron nanoparticles produced by highly efficient physical synthesis, namely, the molecular beam method. The structure, chemical and phase composition of Fe-NaCl condensates with different iron contents, crystallite dimensions (nanoparticles) and nanoparticle surface areas depending on the condensation temperature, which characterize the sorption capacity, primarily for moisture and oxygen, were studied. Finally, the gravimetric analysis method was used to investigate the kinetics of the relative change in the weight of porous Fe–NaCl condensates with different iron contents, depending on the condensation temperature. With increasing synthesis temperature, the nanoparticle size increases, and the specific surface area decreases. Therefore, by changing the size of the nanoparticles at the same volume, we can regulate the ratio of the nanoparticle surface to the nanoparticle volume, i.e., change the properties of the reaction surface and, in this way, the contribution of the excess surface energy to the total free energy of the system. The mass fraction of physically adsorbed and bound oxygen (moisture) correlates with the size (area, surface) of the nanoparticles.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Sorption of oxygen and water by EB PVD ligand-free Fe@Fe<sub>3</sub>O<sub>4</sub> nanoparticle in open matrix nanopore</p></div></div></figure></div></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02743-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Scanning and transmission electron microscopy, powder X-ray diffraction and thermogravimetric analyses were used to study the dynamics of the sorption processes of ligand-free iron nanoparticles produced by highly efficient physical synthesis, namely, the molecular beam method. The structure, chemical and phase composition of Fe-NaCl condensates with different iron contents, crystallite dimensions (nanoparticles) and nanoparticle surface areas depending on the condensation temperature, which characterize the sorption capacity, primarily for moisture and oxygen, were studied. Finally, the gravimetric analysis method was used to investigate the kinetics of the relative change in the weight of porous Fe–NaCl condensates with different iron contents, depending on the condensation temperature. With increasing synthesis temperature, the nanoparticle size increases, and the specific surface area decreases. Therefore, by changing the size of the nanoparticles at the same volume, we can regulate the ratio of the nanoparticle surface to the nanoparticle volume, i.e., change the properties of the reaction surface and, in this way, the contribution of the excess surface energy to the total free energy of the system. The mass fraction of physically adsorbed and bound oxygen (moisture) correlates with the size (area, surface) of the nanoparticles.

Graphical Abstract

Sorption of oxygen and water by EB PVD ligand-free Fe@Fe3O4 nanoparticle in open matrix nanopore

Abstract Image

铁纳米粒子物理合成吸附过程动力学研究
采用扫描电镜、透射电镜、粉末x射线衍射和热重分析研究了高效物理合成即分子束法制备的无配体铁纳米颗粒的吸附动力学过程。研究了不同铁含量、晶粒尺寸(纳米粒子)和纳米粒子表面积随缩合温度的变化而变化的Fe-NaCl缩合物的结构、化学组成和物相组成,这些特征表征了Fe-NaCl的吸附能力,主要是对水分和氧气的吸附能力。最后,采用重量分析方法研究了不同含铁量的Fe-NaCl多孔凝聚物相对质量随冷凝温度的变化动力学。随着合成温度的升高,纳米颗粒尺寸增大,比表面积减小。因此,在相同体积下,通过改变纳米颗粒的尺寸,我们可以调节纳米颗粒表面积与纳米颗粒体积的比例,即改变反应表面的性质,从而改变多余的表面能对体系总自由能的贡献。物理吸附和结合氧(水分)的质量分数与纳米颗粒的大小(面积、表面)有关。无配体的EB PVD纳米粒子Fe@Fe3O4在开放基质纳米孔中对氧和水的吸附
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信