{"title":"Enhanced PM2.5 prediction in Delhi using a novel optimized STL-CNN-BILSTM-AM hybrid model","authors":"T. Sreenivasulu, G. Mokesh Rayalu","doi":"10.1007/s44273-024-00048-7","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate air pollution predictions in urban areas facilitate the implementation of efficient actions to control air pollution and the formulation of strategies to mitigate contamination. This includes establishing an early warning system to notify the public. Creating precise estimates for PM2.5 air pollutants in large cities is a challenging task because of the numerous relevant factors and quick fluctuations. This study introduces a novel hybrid model named STL-CNN-BILSTM-AM. It combines the seasonal-trend decomposition method with LOESS (STL) to simplify learning tasks and increase prediction accuracy for complex, nonlinear time-series data. Convolutional neural networks (CNNs) extract features from decomposed components of PM2.5 and other feature variables, such as pollutants and meteorological variables. Bidirectional long-short-term memory (BILSTM) uses these features to extract temporal relationships, enabling the forecasting of daily PM2.5 levels at four locations in Delhi. This hybrid model uses attention mechanisms to extract the most significant information, as well as Bayesian optimization to tune the hyperparameters. The suggested model greatly improved performance in all four regions used in this study, as evidenced by the findings. We compared it with the CNN-BILSTM, BILSTM, LSTM, and CNN models, and the suggested model outperformed the state-of-the-art models by utilizing STL decomposition components and other features. The overall results show that the STL-CNN-BILSTM-AM is better at predicting air quality, especially the concentration of PM2.5 in cities when the data has a high seasonal trend and is complex.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":"18 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00048-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00048-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate air pollution predictions in urban areas facilitate the implementation of efficient actions to control air pollution and the formulation of strategies to mitigate contamination. This includes establishing an early warning system to notify the public. Creating precise estimates for PM2.5 air pollutants in large cities is a challenging task because of the numerous relevant factors and quick fluctuations. This study introduces a novel hybrid model named STL-CNN-BILSTM-AM. It combines the seasonal-trend decomposition method with LOESS (STL) to simplify learning tasks and increase prediction accuracy for complex, nonlinear time-series data. Convolutional neural networks (CNNs) extract features from decomposed components of PM2.5 and other feature variables, such as pollutants and meteorological variables. Bidirectional long-short-term memory (BILSTM) uses these features to extract temporal relationships, enabling the forecasting of daily PM2.5 levels at four locations in Delhi. This hybrid model uses attention mechanisms to extract the most significant information, as well as Bayesian optimization to tune the hyperparameters. The suggested model greatly improved performance in all four regions used in this study, as evidenced by the findings. We compared it with the CNN-BILSTM, BILSTM, LSTM, and CNN models, and the suggested model outperformed the state-of-the-art models by utilizing STL decomposition components and other features. The overall results show that the STL-CNN-BILSTM-AM is better at predicting air quality, especially the concentration of PM2.5 in cities when the data has a high seasonal trend and is complex.