Effect of interfacial microstructure on TiAl-Ti3Al biphase alloy was studied via molecular dynamics

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Min Zheng, Tao Zheng, Weihua Chen, Dingfeng Qu, Wenyuan Chen, Zongxiao Zhu
{"title":"Effect of interfacial microstructure on TiAl-Ti3Al biphase alloy was studied via molecular dynamics","authors":"Min Zheng,&nbsp;Tao Zheng,&nbsp;Weihua Chen,&nbsp;Dingfeng Qu,&nbsp;Wenyuan Chen,&nbsp;Zongxiao Zhu","doi":"10.1007/s00339-024-08173-4","DOIUrl":null,"url":null,"abstract":"<div><p>The TiAl-Ti<sub>3</sub>Al biphase alloy is widely used in high-tech fields. The evolution of its interfacial microstructure affects alloy performance. But the impact of the biphase interfacial microstructure on mechanical properties under external forces is unknown. For the purpose of attaining a more profound comprehension of TiAl alloys and facilitating their extensive employment. In this work, the evolution of the γ(TiAl)/α<sub>2</sub>(Ti<sub>3</sub>Al) interface microstructure under external force was investigated by the nanoindentation model of MD simulation. The results showed that the γ(TiAl)/α<sub>2</sub>(Ti<sub>3</sub>Al) interface microstructure can hinder the motion of interface atoms under the spherical nanoindenter’s action. The atoms moved parallel to the interface, enhancing the alloy’s deformation resistance. During indentation, dislocations slipped from the Ti<sub>3</sub>Al phase to the TiAl phase, but not vice versa. Moreover, the phase difference led to significantly different elastic recovery rates, shear strains, and plastic deformation capabilities.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-024-08173-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-024-08173-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The TiAl-Ti3Al biphase alloy is widely used in high-tech fields. The evolution of its interfacial microstructure affects alloy performance. But the impact of the biphase interfacial microstructure on mechanical properties under external forces is unknown. For the purpose of attaining a more profound comprehension of TiAl alloys and facilitating their extensive employment. In this work, the evolution of the γ(TiAl)/α2(Ti3Al) interface microstructure under external force was investigated by the nanoindentation model of MD simulation. The results showed that the γ(TiAl)/α2(Ti3Al) interface microstructure can hinder the motion of interface atoms under the spherical nanoindenter’s action. The atoms moved parallel to the interface, enhancing the alloy’s deformation resistance. During indentation, dislocations slipped from the Ti3Al phase to the TiAl phase, but not vice versa. Moreover, the phase difference led to significantly different elastic recovery rates, shear strains, and plastic deformation capabilities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信