Punit Tomar, Sarvendra Kumar, Megha Gupta Chaudhary, Jitendra Kumar, Komal Jain, R. P. Pant
{"title":"Magneto-Optical Studies of Fe3O4-Based Nanomagnetic Fluid","authors":"Punit Tomar, Sarvendra Kumar, Megha Gupta Chaudhary, Jitendra Kumar, Komal Jain, R. P. Pant","doi":"10.1007/s11664-024-11571-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effect of particle concentration on tuneable magneto-optical transmittance and optically induced refractive index coefficients in Fe<sub>3</sub>O<sub>4</sub>-based nanomagnetic fluid (NMF) at room temperature. A static magneto-optical experimental setup was devised to investigate the magneto-optical effects arising from variations in particle concentration and dipolar interactions, under varying magnetic fields. In this work, Fe<sub>3</sub>O<sub>4</sub>-based nanomagnetic fluid was synthesized using a chemical co-precipitation method. The structural, morphological, and magnetic properties of the fluid were investigated using sophisticated characterization techniques including x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and vibrating-sample magnetometry (VSM). Our investigation focused on the tunability of magneto-optical transmittance as a function of the varying magnetic field at different particle concentrations. Further, we observed variations in diffraction fringes in the nanomagnetic fluid, correlating with particle concentration, by passing a high-power laser through the diluted fluid system. Light–matter interaction in the presence of a varying magnetic field induces optical anisotropy in the fluid, whereas dipole–moment interaction and magnetic particle alignment in the presence of a magnetic field are the main supporting phenomenon of magneto-optical tunability in our experiment. Experimental modulation of the transmittance profile and field-induced refractive index coefficients in NMF, elucidated through fringe diffraction, has potential for applications such as tuneable magneto-optical devices, optical filters, and optical limiters.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"232 - 240"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11571-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of particle concentration on tuneable magneto-optical transmittance and optically induced refractive index coefficients in Fe3O4-based nanomagnetic fluid (NMF) at room temperature. A static magneto-optical experimental setup was devised to investigate the magneto-optical effects arising from variations in particle concentration and dipolar interactions, under varying magnetic fields. In this work, Fe3O4-based nanomagnetic fluid was synthesized using a chemical co-precipitation method. The structural, morphological, and magnetic properties of the fluid were investigated using sophisticated characterization techniques including x-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and vibrating-sample magnetometry (VSM). Our investigation focused on the tunability of magneto-optical transmittance as a function of the varying magnetic field at different particle concentrations. Further, we observed variations in diffraction fringes in the nanomagnetic fluid, correlating with particle concentration, by passing a high-power laser through the diluted fluid system. Light–matter interaction in the presence of a varying magnetic field induces optical anisotropy in the fluid, whereas dipole–moment interaction and magnetic particle alignment in the presence of a magnetic field are the main supporting phenomenon of magneto-optical tunability in our experiment. Experimental modulation of the transmittance profile and field-induced refractive index coefficients in NMF, elucidated through fringe diffraction, has potential for applications such as tuneable magneto-optical devices, optical filters, and optical limiters.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.