Kamal Solanki, Prachi Kesharwani, Manoj Kumar Majumder
{"title":"Insights into the Effects of Co-doping on the Electronic Properties of Armchair Graphene Nanoribbon-based NO2 Gas Sensors","authors":"Kamal Solanki, Prachi Kesharwani, Manoj Kumar Majumder","doi":"10.1007/s11664-024-11539-2","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen dioxide (NO<sub>2</sub>) emissions from numerous sources pose a significant threat to health, necessitating the development of highly sensitive electronic sensors. In response to this issue, this study investigates the influence of NO<sub>2</sub> molecules on a hydrogen (H)-passivated doped/undoped armchair graphene nanoribbon (ArGNR). The electronic properties are examined using density functional theory (DFT) within the framework of a linear combination of atomic orbitals (LCAO) calculator, combined with the nonequilibrium Green’s function (NEGF). The modeling focuses on the impact of doping with manganese (Mn) and co-doping of Mn with group V elements [nitrogen (N), phosphorus (P), and arsenic (As) atoms] on the electronic properties of the ArGNR. The introduction of the Mn element introduces spin–polarization that can influence the adsorption behavior of the target molecule, enhancing the sensitivity and selectivity of ArGNR. Moreover, the results show that the co-doping in ArGNR significantly enhances the bandgap opening compared to individual doping, resulting in improved sensitivity towards the NO<sub>2</sub> molecules. Subsequently, compared to Mn-P- and Mn-As-co-doped ArGNR, the Mn-N-co-doped ArGNR exhibits binding energy (<i>E</i><sub><i>B</i></sub>) of 308.47 eV, high chemisorption of −2.92 eV, desorption of 39.69%, notable variations in bandgap (<i>E</i><sub><i>G</i></sub>) of 16.5%, and a large current variation by a factor of 2.64 times following NO<sub>2</sub> adsorption, indicating improved conductivity. These findings highlight the potential of the Mn-N-co-doped ArGNR as a leading material for NO<sub>2</sub> sensing.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"300 - 309"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11539-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen dioxide (NO2) emissions from numerous sources pose a significant threat to health, necessitating the development of highly sensitive electronic sensors. In response to this issue, this study investigates the influence of NO2 molecules on a hydrogen (H)-passivated doped/undoped armchair graphene nanoribbon (ArGNR). The electronic properties are examined using density functional theory (DFT) within the framework of a linear combination of atomic orbitals (LCAO) calculator, combined with the nonequilibrium Green’s function (NEGF). The modeling focuses on the impact of doping with manganese (Mn) and co-doping of Mn with group V elements [nitrogen (N), phosphorus (P), and arsenic (As) atoms] on the electronic properties of the ArGNR. The introduction of the Mn element introduces spin–polarization that can influence the adsorption behavior of the target molecule, enhancing the sensitivity and selectivity of ArGNR. Moreover, the results show that the co-doping in ArGNR significantly enhances the bandgap opening compared to individual doping, resulting in improved sensitivity towards the NO2 molecules. Subsequently, compared to Mn-P- and Mn-As-co-doped ArGNR, the Mn-N-co-doped ArGNR exhibits binding energy (EB) of 308.47 eV, high chemisorption of −2.92 eV, desorption of 39.69%, notable variations in bandgap (EG) of 16.5%, and a large current variation by a factor of 2.64 times following NO2 adsorption, indicating improved conductivity. These findings highlight the potential of the Mn-N-co-doped ArGNR as a leading material for NO2 sensing.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.