{"title":"Detailed Analysis of the Superconducting Gap with Dynes Pair-Breaking Scattering","authors":"Anastasiya Lebedeva, František Herman","doi":"10.1007/s10948-024-06844-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study the energy gap within the Dynes superconductor theory. This model generalizes the Bardeen-Cooper-Schrieffer (BCS) approach by including the pair-breaking scattering, introducing the tunneling in-gap states up to a Fermi level. We analytically solve the energy gap equation in various limit cases. The solution provides simple tools for further studies, compared to more complex numerics, and highlights the basic characteristics of the theory. First, in the critical limit of pair-breaking scattering, we derive an analytical form of zero-temperature gap to transition temperature ratio. Next, we derive the dependence of the energy gap close to critical temperature and look at its behavior for general and critical pair-breaking scattering rate. Furthermore, we compare our result with the numerical solution of the gap equation assuming general temperature. We show the range of temperatures, for which the analytical approximation is valid. In the end, we provide the approximative formula of the gap, assuming general pair-breaking scattering, emphasizing its exact behavior close to transition temperature.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10948-024-06844-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06844-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the energy gap within the Dynes superconductor theory. This model generalizes the Bardeen-Cooper-Schrieffer (BCS) approach by including the pair-breaking scattering, introducing the tunneling in-gap states up to a Fermi level. We analytically solve the energy gap equation in various limit cases. The solution provides simple tools for further studies, compared to more complex numerics, and highlights the basic characteristics of the theory. First, in the critical limit of pair-breaking scattering, we derive an analytical form of zero-temperature gap to transition temperature ratio. Next, we derive the dependence of the energy gap close to critical temperature and look at its behavior for general and critical pair-breaking scattering rate. Furthermore, we compare our result with the numerical solution of the gap equation assuming general temperature. We show the range of temperatures, for which the analytical approximation is valid. In the end, we provide the approximative formula of the gap, assuming general pair-breaking scattering, emphasizing its exact behavior close to transition temperature.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.