{"title":"Synthesis of Copper-Coated CuS Core–Shell Nanoparticles by CBD for Rhodamine Blue Dye Degradation","authors":"Varun Kumar, Himanshu Sharma, Munish Kumar Yadav, Sarvendra Kumar, Devendra Kumar Rana, Vidya Nand Singh, Surbhi","doi":"10.1007/s11664-024-11573-0","DOIUrl":null,"url":null,"abstract":"<div><p>Core–shell nanoparticles were synthesised by coating copper over CuS nanoparticles, which were synthesised using different precursors. X-ray diffraction, x-ray photoelectron spectroscopy (XPS) and field-emission electron microscopy (FESEM) analysis showed the variation in crystallite size, chemical state, and morphological properties. The band gap was in the range of 1.32–2.08 eV for coated and uncoated samples. The emission peaks in photoluminescence spectra showed the presence of defects, and all analyses were correlated with each other to explain the 95% degradation of 50 ml rhodamine blue dye at a concentration of 1 mg/L in 60 min using the catalytic weight of 15 mg. The plasmonic properties were observed in near-infrared (NIR) absorption analysis and explained with the help of XPS and its enhancement in photocatalytic activity. The coating of copper over copper sulphide nanoparticles in sample 1-C and 2-C showed improved catalytic degradation for rhodamine blue.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"499 - 509"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11573-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Core–shell nanoparticles were synthesised by coating copper over CuS nanoparticles, which were synthesised using different precursors. X-ray diffraction, x-ray photoelectron spectroscopy (XPS) and field-emission electron microscopy (FESEM) analysis showed the variation in crystallite size, chemical state, and morphological properties. The band gap was in the range of 1.32–2.08 eV for coated and uncoated samples. The emission peaks in photoluminescence spectra showed the presence of defects, and all analyses were correlated with each other to explain the 95% degradation of 50 ml rhodamine blue dye at a concentration of 1 mg/L in 60 min using the catalytic weight of 15 mg. The plasmonic properties were observed in near-infrared (NIR) absorption analysis and explained with the help of XPS and its enhancement in photocatalytic activity. The coating of copper over copper sulphide nanoparticles in sample 1-C and 2-C showed improved catalytic degradation for rhodamine blue.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.