{"title":"Study of Dosimetric properties of LiB3O5:Ag using the OSL/TA-OSL method for Medical Radiation Application","authors":"Sahil, Gopishankar Natanasabapathi, Sourab Shyleshan, Rajesh Kumar, Mukesh Kumar Yadav, Aruna Kaushik, Pratik Kumar","doi":"10.1007/s11664-024-11544-5","DOIUrl":null,"url":null,"abstract":"<div><p>Due to numerous characteristics (chemical stability, optical transparency, etc.), tissue equivalency, and other factors, lithium borates are an appropriate material for radiation dosimetry. This work explores the optical stimulated luminescence (OSL) dosimetry of lithium triborate (LiB<sub>3</sub>O<sub>5</sub>) doped with Ag. Here, we have used thermally-assisted OSL (TA-OSL), where OSL is recorded following thermal stimulation of the sample, to assess the presence of primary dosimetric and deep defects. The optimized elevated temperature for LiB<sub>3</sub>O<sub>5</sub>:Ag was found to be 100°C corresponding to maximum TA-OSL intensity due to depletion of its filled traps (indicating deep defects). X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and ultraviolet–visible (UV-Vis) spectrophotometry were all used to characterized the structural and chemical properties of the sample. Along with other OSL characteristics like fading and repeatability, response of the obtained nanophosphor under CW-OSL with x-ray photons and electrons of a range of energies including cobalt-60 in radiotherapy has also been examined.</p></div>","PeriodicalId":626,"journal":{"name":"Journal of Electronic Materials","volume":"54 1","pages":"180 - 190"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11664-024-11544-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Due to numerous characteristics (chemical stability, optical transparency, etc.), tissue equivalency, and other factors, lithium borates are an appropriate material for radiation dosimetry. This work explores the optical stimulated luminescence (OSL) dosimetry of lithium triborate (LiB3O5) doped with Ag. Here, we have used thermally-assisted OSL (TA-OSL), where OSL is recorded following thermal stimulation of the sample, to assess the presence of primary dosimetric and deep defects. The optimized elevated temperature for LiB3O5:Ag was found to be 100°C corresponding to maximum TA-OSL intensity due to depletion of its filled traps (indicating deep defects). X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and ultraviolet–visible (UV-Vis) spectrophotometry were all used to characterized the structural and chemical properties of the sample. Along with other OSL characteristics like fading and repeatability, response of the obtained nanophosphor under CW-OSL with x-ray photons and electrons of a range of energies including cobalt-60 in radiotherapy has also been examined.
期刊介绍:
The Journal of Electronic Materials (JEM) reports monthly on the science and technology of electronic materials, while examining new applications for semiconductors, magnetic alloys, dielectrics, nanoscale materials, and photonic materials. The journal welcomes articles on methods for preparing and evaluating the chemical, physical, electronic, and optical properties of these materials. Specific areas of interest are materials for state-of-the-art transistors, nanotechnology, electronic packaging, detectors, emitters, metallization, superconductivity, and energy applications.
Review papers on current topics enable individuals in the field of electronics to keep abreast of activities in areas peripheral to their own. JEM also selects papers from conferences such as the Electronic Materials Conference, the U.S. Workshop on the Physics and Chemistry of II-VI Materials, and the International Conference on Thermoelectrics. It benefits both specialists and non-specialists in the electronic materials field.
A journal of The Minerals, Metals & Materials Society.